1.Advances in mechanotransduction signaling pathways in distraction osteogenesis.
Jinghong YANG ; Lujun JIANG ; Zi WANG ; Zhong LI ; Yanshi LIU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):912-918
OBJECTIVE:
To review the role and research progress of mechanotransduction signaling pathway in distraction osteogenesis, so as to provide theoretical basis and reference for clinical treatment.
METHODS:
The role and research progress of mechanotransduction signaling pathway in distraction osteogenesis were summarized by extensive review of relevant literature at home and abroad.
RESULTS:
The mechanotransduction signaling pathway plays a central role of "sensation-transformation-execution" in distraction osteogenesis, and activates a series of molecular mechanisms to promote the regeneration and remodeling of bone tissue by integrating external mechanical signals. Mechanical stimuli are converted into mechanotransduction signals through the perception of integrins, Piezo1 ion channels and bone cell networks. Activate downstream molecules are transduce through signal pathways such as Wnt/β-catenin, transforming growth factor β/bone morphogenetic protein-Smad, mitogen-activated protein kinase, protein kinase Hippo-Yes-associated protein/transcriptional coactivator with PDZ-binding motif, and phosphatidylinositol 3-kinase/ protein kinase B, so as to achieve the effects of promoting osteoblasts proliferation, accelerating endochondral ossification, regulating bone resorption and the like, thereby promoting the regeneration of new bone in the distraction area. The study of mechanotransduction signaling pathways in distraction osteogenesis is expected to optimize the mechanical parameters of distraction osteogenesis and provide targeted intervention strategies for accelerating new bone regeneration and mineralization in the distraction zone. However, the specific mechanism of mechanotransduction signaling pathway in distraction osteogenesis remains to be further elucidated, and artificial intelligence and multi-omics analysis may be the future development direction of mechanotransduction signaling pathway.
CONCLUSION
In distraction osteogenesis, mechanotransduction signal transduction is the core mechanism of bone regeneration in the distraction zone, which regulates cell behavior and tissue regeneration by converting mechanical stimulation into biochemical signals.
Mechanotransduction, Cellular/physiology*
;
Osteogenesis, Distraction/methods*
;
Humans
;
Signal Transduction
;
Bone Regeneration
;
Animals
;
Osteoblasts/metabolism*
;
Osteogenesis
;
Transforming Growth Factor beta/metabolism*
;
Ion Channels/metabolism*
;
Integrins/metabolism*
;
beta Catenin/metabolism*
;
Bone Morphogenetic Proteins/metabolism*
;
Smad Proteins/metabolism*
2.Progress in the regulation of mammalian embryonic development and reproduction by bone morphogenetic proteins.
Hongyu JIA ; Honghong HE ; Peng WANG ; Xiaoxiao HUANG ; Wenyi CAI ; Yaying WANG ; Jian LI ; Daoliang LAN ; Huizhu ZHANG
Chinese Journal of Biotechnology 2025;41(7):2534-2544
Bone morphogenetic proteins (BMPs) are multifunctional growth factors of the transforming growth factor β (TGF-β) superfamily. They regulate steroid secretion from mammalian granulosa cells, promote granulosa cell survival and proliferation, and inhibit follicular atresia, luteinization, and granulosa cell apoptosis, thereby promoting the development and maturation of mammalian follicles. At the same time, BMPs play an important role in embryonic morphogenesis, induction of uterine receptivity, and blastocyst attachment. This paper describes the effects of BMPs on mammalian follicular and embryonic development and the roles of BMPs in female reproduction, focusing on the process in which BMPs promote follicular maturation by regulating steroid secretion from granulosa cells during mammalian oocyte maturation. This review aims to provide a reference for further research on mammalian oocyte culture and improvement of reproductive efficiency in female animals.
Animals
;
Embryonic Development/drug effects*
;
Female
;
Bone Morphogenetic Proteins/pharmacology*
;
Reproduction/physiology*
;
Humans
;
Granulosa Cells/cytology*
;
Oocytes
3.Research progress on signaling molecules involved in articular cartilage repair.
Pengcheng TU ; Yang GUO ; Suyang ZHENG ; Yalan PAN ; Lining WANG ; Yong MA
Journal of Biomedical Engineering 2019;36(2):343-348
After the articular cartilage injury, the metabolic level is increased during the progressive degeneration, the chondrocytes secrete a variety of inflammatory factors, and the original cell phenotype is gradually changed. For a long time, a large number of researchers have done a lot of researches to promote anabolism of chondrocytes and to maintain the stability of chondrocyte phenotype. There are many molecular signaling pathways involved in the process of promoting cartilage repair. This review focuses on the key signaling molecules in articular cartilage repair, such as transforming growth factor-beta and bone morphogenetic protein, and reveals their roles in the process of cartilage injury and repair, so that researchers in related fields can understand the molecular mechanism of cartilage injury and repair widely and deeply. Based on this, they may find promising targets and biological methods for the treatment of cartilage injury.
Bone Morphogenetic Proteins
;
physiology
;
Cartilage, Articular
;
growth & development
;
injuries
;
Chondrocytes
;
physiology
;
Humans
;
Regeneration
;
Signal Transduction
;
Transforming Growth Factor beta
;
physiology
4.Bone morphogenetic proteins and inner ear development.
Jiao-Yao MA ; Dan YOU ; Wen-Yan LI ; Xiao-Ling LU ; Shan SUN ; Hua-Wei LI
Journal of Zhejiang University. Science. B 2019;20(2):131-145
Bone morphogenetic proteins (BMPs) are the largest subfamily of the transforming growth factor-β superfamily, and they play important roles in the development of numerous organs, including the inner ear. The inner ear is a relatively small organ but has a highly complex structure and is involved in both hearing and balance. Here, we discuss BMPs and BMP signaling pathways and then focus on the role of BMP signal pathway regulation in the development of the inner ear and the implications this has for the treatment of human hearing loss and balance dysfunction.
Body Patterning
;
Bone Morphogenetic Protein Receptors/physiology*
;
Bone Morphogenetic Proteins/physiology*
;
Cell Differentiation
;
Cochlea/embryology*
;
Ear, Inner/embryology*
;
Hedgehog Proteins/physiology*
;
Humans
;
Signal Transduction/physiology*
;
Smad Proteins/physiology*
;
Vestibule, Labyrinth/embryology*
;
Wnt Signaling Pathway
5.The role of bone morphogenetic protein signaling pathway in tooth root development.
Cang-Wei LIU ; Yi-Jun ZHOU ; Guang-Xing YAN ; Ce SHI ; Xue ZHANG ; Yue HU ; Xin-Qing HAO ; Huan ZHAO ; Hong-Chen SUN
West China Journal of Stomatology 2018;36(5):559-563
The bone morphogenetic protein (BMP) family is an important factor in the regulation of cell ular life activities and in the development of almost all tissues. BMP-mediated signaling plays an important role in tooth root development, which is a part of tooth development. Epithelial and mesenchymal interactions are involved in tooth root development, but the BMP signaling pathway has a different effect on tooth root development in epithelial and mesenchymal. This review summarizes the advances of BMP signaling in tooth root development.
Bone Morphogenetic Protein 2
;
Bone Morphogenetic Protein 7
;
Bone Morphogenetic Proteins
;
physiology
;
Odontogenesis
;
Signal Transduction
;
Tooth
;
Tooth Root
;
growth & development
6.Effect of Homeobox A13 transfection on epithelial-mesenchymal transition and bone morphogenetic protein-7 expression in kidney tubular epithelial cells.
Li PENG ; Qing-Nan HE ; Xiao-Yan LI ; Lan-Jun SHUAI ; Hai-Xia CHEN ; Yong-Zhen LI ; Zhu-Wen YI
Chinese Journal of Contemporary Pediatrics 2015;17(12):1342-1347
OBJECTIVETo examine the transfection of Homeobox A13 (HOXA13) on epithelial-mesenchymal transition (EMT) and the expression of bone morphogenetic protein-7 (BMP-7) induced by albumin-overload in human kidney tubular epithelial cells (HKCs).
METHODSThe cultured HKCs were treated with 20 mg/mL human serum albumin (HSA) for 48 hours. Protein expression of cytokeratin (CK), vimentin and HOXA13 in the HKCs was assessed by Western blot. Protein expression of CK, vimentin, and BMP-7 was also detected in HKCs transfected with lipofectamine contained HOXA13 DNA.
RESULTSHSA induced EMT in HKCs, presented by decreased CK expression (P<0.01) and increased vimentin expression (P<0.01). The up-regulated expression of HOXA13 transfected by lipofectamine inhibited the level of EMT induced by HSA in HKCs (P<0.05). The decreased rate of BMP-7 protein expression induced by HSA was inhibited by over-expressed HOXA13 in HKCs (P<0.05).
CONCLUSIONSTransfection of HOXA13 in HKCs could inhibit the degree of EMT induced by albumin-overload, possibly by increasing BMP-7 expression.
Bone Morphogenetic Protein 7 ; genetics ; Cells, Cultured ; Epithelial Cells ; metabolism ; Epithelial-Mesenchymal Transition ; Homeodomain Proteins ; physiology ; Humans ; Keratins ; genetics ; Kidney Tubules ; metabolism ; Transfection ; Vimentin ; genetics
7.Bone morphogenetic protein 2-induced human dental pulp cell differentiation involves p38 mitogen-activated protein kinase-activated canonical WNT pathway.
Jing YANG ; Ling YE ; Tian-Qian HUI ; Dong-Mei YANG ; Ding-Ming HUANG ; Xue-Dong ZHOU ; Jeremy J MAO ; Cheng-Lin WANG
International Journal of Oral Science 2015;7(2):95-102
Both bone morphogenetic protein 2 (BMP2) and the wingless-type MMTV integration site (WNT)/β-catenin signalling pathway play important roles in odontoblast differentiation and dentinogenesis. Cross-talk between BMP2 and WNT/β-catenin in osteoblast differentiation and bone formation has been identified. However, the roles and mechanisms of the canonical WNT pathway in the regulation of BMP2 in dental pulp injury and repair remain largely unknown. Here, we demonstrate that BMP2 promotes the differentiation of human dental pulp cells (HDPCs) by activating WNT/β-catenin signalling, which is further mediated by p38 mitogen-activated protein kinase (MAPK) in vitro. BMP2 stimulation upregulated the expression of β-catenin in HDPCs, which was abolished by SB203580 but not by Noggin or LDN193189. Furthermore, BMP2 enhanced cell differentiation, which was not fully inhibited by Noggin or LDN193189. Instead, SB203580 partially blocked BMP2-induced β-catenin expression and cell differentiation. Taken together, these data suggest a possible mechanism by which the elevation of β-catenin resulting from BMP2 stimulation is mediated by the p38 MAPK pathway, which sheds light on the molecular mechanisms of BMP2-mediated pulp reparative dentin formation.
Bone Morphogenetic Protein 2
;
physiology
;
Cell Differentiation
;
physiology
;
Dental Pulp
;
cytology
;
Humans
;
MAP Kinase Signaling System
;
Wnt Proteins
;
metabolism
;
beta Catenin
;
metabolism
8.Genome-wide study reveals an important role of spontaneous autoimmunity, cardiomyocyte differentiation defect and anti-angiogenic activities in gender-specific gene expression in Keshan disease.
Shulan HE ; Wuhong TAN ; Sen WANG ; Cuiyan WU ; Pan WANG ; Bin WANG ; Xiaohui SU ; Junjie ZHAO ; Xiong GUO ; Youzhang XIANG
Chinese Medical Journal 2014;127(1):72-78
BACKGROUNDKeshan disease (KD) is an endemic cardiomyopathy in China. The etiology of KD is still under debate and there is no effective approach to preventing and curing this disease. Young women of child-bearing age are the most frequent victims in rural areas. The aim of this study was to determine the differences between molecular pathogenic mechanisms in male and female KD sufferers.
METHODSWe extracted RNA from the peripheral blood mononuclear cells of KD patients (12 women and 4 men) and controls (12 women and 4 men). Then the isolated RNA was amplified, labeled and hybridized to Agilent human 4×44k whole genome microarrays. Gene expression was examined using oligonucleotide microarray analysis. A quantitative polymerase chain reaction assay was also performed to validate our microarray results.
RESULTSAmong the genes differentially expressed in female KD patients we identified: HLA-DOA, HLA-DRA, and HLA-DQA1 associated with spontaneous autoimmunity; BMP5 and BMP7, involved in cardiomyocyte differentiation defect; and ADAMTS 8, CCL23, and TNFSF15, implicated in anti-angiogenic activities. These genes are involved in the canonical pathways and networks recognized for the female KD sufferers and might be related to the pathogenic mechanism of KD.
CONCLUSIONOur results might help to explain the higher susceptibility of women to this disease.
ADAM Proteins ; genetics ; ADAMTS Proteins ; Adult ; Autoimmunity ; genetics ; physiology ; Bone Morphogenetic Protein 5 ; genetics ; Bone Morphogenetic Protein 7 ; genetics ; Cardiomyopathies ; genetics ; pathology ; Cell Differentiation ; genetics ; physiology ; Chemokines, CC ; genetics ; Enterovirus Infections ; genetics ; pathology ; Female ; Gene Expression Profiling ; HLA-D Antigens ; genetics ; HLA-DQ alpha-Chains ; genetics ; HLA-DR alpha-Chains ; genetics ; Humans ; Male ; Middle Aged ; Myocytes, Cardiac ; cytology ; metabolism ; Oligonucleotide Array Sequence Analysis ; Sex Factors ; Tumor Necrosis Factor Ligand Superfamily Member 15 ; genetics
9.Effect of bone morphogenetic protein 7 on differentiation of adipose derived mesenchymal stem cells into brown adipocytes in rats.
Long ZHENG ; Jian-Min LIU ; Jun-Xia WANG ; Min-Zhi LI ; Wei-Guang LIAN ; Peng XIE ; Shu-Feng LIU
Acta Academiae Medicinae Sinicae 2014;36(6):654-659
OBJECTIVETo evaluate the effect of bone morphogenetic protein(BMP7)on the differentiation of adipose derived mesenchymal stem cells(AD-MSCs)isolated from different adipose tissues into brown adipocytes in rats.
METHODSPrimary AD-MSCs were isolated from rate interscapular brown adipose tissue(iBAT),inguinal subcutaneous white adipose tissue(sWAT),and epididymal white adipose tissue(eWAT),respectively,and then cultivated in vitro. Differentiation of AD-MSCs into brown adipocytes was induced by BMP7. The characteristics of brown adipocytes were detected by immunofluorescence staining and oil red staining of cells. The expression levels of brown adipocyte-related genes were detected by polymerase chain reaction.
RESULTSAD-MSCs from iBAT and sWAT were differentiated into cluster multilocular cells,which were stained red by oil red "O"staining and showed uncoupling protein 1-positive by immunofluorescent staining method. AD-MSCs from eWAT had a small number of scattered multilocular cells and showed uncoupling protein 1-negative. The results of reverse transcription-polymerase chain reaction showed that the uncoupling protein 1 gene was highly expressed in the iBAT group and sWAT group but was negative in the eWAT group.
CONCLUSIONAD-MSCs isolated from different adipose tissues in rats have different gene expression profiles and differentiation potentials.
Adipocytes, Brown ; physiology ; Adipose Tissue ; metabolism ; Adipose Tissue, Brown ; physiology ; Animals ; Bone Morphogenetic Protein 7 ; metabolism ; Cell Differentiation ; physiology ; Ion Channels ; metabolism ; Mesenchymal Stromal Cells ; physiology ; Mitochondrial Proteins ; metabolism ; Obesity ; metabolism ; Rats ; Uncoupling Protein 1
10.A single nucleotide polymorphism in the human bone morphogenetic protein-2 gene (109T > G) affects the Smad signaling pathway and the predisposition to ossification of the posterior longitudinal ligament of the spine.
Liang YAN ; Zhen CHANG ; Yang LIU ; Yi-Bing LI ; Bao-Rong HE ; Ding-Jun HAO
Chinese Medical Journal 2013;126(6):1112-1118
BACKGROUNDAlthough various systemic and local factors such as abnormal carbohydrate or calcium metabolism, aging, and hormonal disturbances have been suggested as causes of ossification of the posterior longitudinal ligament (OPLL), the etiology of OPLL is not fully understood. The purpose of this study was to investigate whether bone morphogenetic protein (BMP)-2 is a candidate gene to modify the susceptibility of OPLL and the mechanism of signal transduction in ossification.
METHODSA total of 420 OPLL patients and 506 age- and sex-matched controls were studied. The complete coding sequence of the human BMP-2 gene was analyzed using polymerase chain reaction (PCR) and direct sequencing. All single nucleotide polymorphisms (SNPs) were detected and genotyped. BMP-2 expression vectors containing positive polymorphisms were constructed and transfected into the C3H10T1/2 cells. The expression of BMP-2 and the Smad signal pathway in positive cell clones were detected by Western blotting. The alkaline phosphatase (ALP) activity was determined using quantitative detection kits.
RESULTSThe frequencies for the 109T > G and 570A > T polymorphisms were different between the case and control groups. The "TG" genotype in 109T > G polymorphism is associated with the occurrence of OPLL, the frequency of the "G" allele is significantly higher in patients with OPLL than in control subjects (P < 0.001). The "AT" genotype in 570A > T polymorphism is associated with the occurrence of OPLL, the frequency of the "T" allele is significantly higher in patients with OPLL than in control subjects (P = 0.005). Western blotting analysis revealed that the expression of P-Smad1/5/8 protein transfected by wild-type or mutant expression vectors were significantly higher than control groups (P < 0.05), but there was no statistical difference in each experimental group (P > 0.05). The expression of Smad4 protein transfected by wild-type or mutant expression vectors was significantly higher than control groups (P < 0.05). The expression of Smad4 protein transfected by pcDNA3.1-BMP2 (109G) and pcDNA3.1-BMP2 (109G, 570T) was significantly higher than the other experimental groups (P < 0.05). The increase in ALP activity has been detected in pcDNA3.1-BMP2 (109G) and pcDNA3.1-BMP2 (109G, 570T) transfected cells up to 4 weeks after stable transfection. Activity of ALP was (30.56 ± 0.46) nmol×min(-1)×mg(-1) protein and (29.62 ± 0.68) nmol×min(-1)×mg(-1) protein, respectively. This was statistically different compared with the other experimental groups (P < 0.05).
CONCLUSIONSBMP-2 is the predisposing gene of OPLL. The "TG" genotype in the 109T > G and the "AT" genotype in the 570A > T polymorphisms are associated with the occurrence of OPLL. The 109T > G polymorphism in exon-2 of the BMP-2 gene is positively associated with the level of Smad4 protein expression and the activity of ALP. The Smad mediated signaling pathway plays an important role during the pathological process of OPLL induced by SNPs of BMP-2 gene.
Adult ; Aged ; Bone Morphogenetic Protein 2 ; genetics ; Cells, Cultured ; Female ; Humans ; In Situ Hybridization ; Longitudinal Ligaments ; metabolism ; Male ; Middle Aged ; Polymorphism, Single Nucleotide ; genetics ; Signal Transduction ; genetics ; physiology ; Smad Proteins ; metabolism ; Spine ; metabolism

Result Analysis
Print
Save
E-mail