1.Baicalin attenuates dexamethasone-induced apoptosis of bone marrow mesenchymal stem cells by activating the hedgehog signaling pathway.
Bin JIA ; Yaping JIANG ; Yao YAO ; Yingxing XU ; Yingzhen WANG ; Tao LI
Chinese Medical Journal 2023;136(15):1839-1847
BACKGROUND:
Perturbations in bone marrow mesenchymal stem cell (BMSC) differentiation play an important role in steroid-induced osteonecrosis of the femoral head (SONFH). At present, studies on SONFH concentrate upon the balance within BMSC osteogenic and adipogenic differentiation. However, BMSC apoptosis as well as proliferation are important prerequisites in their differentiation. The hedgehog (HH) signaling pathway regulates bone cell apoptosis. Baicalin (BA), a well-known compound in traditional Chinese medicine, can affect the proliferation and apoptosis of numerous cell types via HH signaling. However, the potential role and mechanisms of BA on BMSCs are unclear. Thus, we aimed to explore the role of BA in dexamethasone (Dex)-induced BMSC apoptosis in this study.
METHODS:
Primary BMSCs were treated with 10 -6 mol/L Dex alone or with 5.0 μmol/L, 10.0 μmol/L, or 50.0 μmol/L BA for 24 hours followed by co-treatment with 5.0 μmol/L, 10.0 μmol/L, or 50.0 μmol/L BA and 10 -6 mol/L Dex. Cell viability was assayed through the Cell Counting Kit-8 (CCK-8). Cell apoptosis was evaluated using Annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining followed by flow cytometry. The imaging and counting, respectively, of Hochest 33342/PI-stained cells were used to assess the morphological characteristics and proportion of apoptotic cells. To quantify the apoptosis-related proteins (e.g., apoptosis regulator BAX [Bax], B-cell lymphoma 2 [Bcl-2], caspase-3, and cleaved caspase-3) and HH signaling pathway proteins, western blotting was used. A HH-signaling pathway inhibitor was used to demonstrate that BA exerts its anti-apoptotic effects via the HH signaling pathway.
RESULTS:
The results of CCK-8, Hoechst 33342/PI-staining, and flow cytometry showed that BA did not significantly promote cell proliferation (CCK-8: 0 μmol/L, 100%; 2.5 μmol/L, 98.58%; 5.0 μmol/L, 95.18%; 10.0 μmol/L, 98.11%; 50.0 μmol/L, 99.38%, F = 2.33, P > 0.05), but it did attenuate the effect of Dex on apoptosis (Hoechst 33342/PI-staining: Dex+ 50.0 μmol/L BA, 12.27% vs. Dex, 39.27%, t = 20.62; flow cytometry: Dex + 50.0 μmol/L BA, 12.68% vs. Dex, 37.43%, t = 11.56; Both P < 0.05). The results of western blotting analysis showed that BA reversed Dex-induced apoptosis by activating the HH signaling pathway, which down-regulated the expression of Bax, cleaved-caspase 3, and suppressor of fused (SUFU) while up-regulating Bcl-2, sonic hedgehog (SHH), and zinc finger protein GLI-1 (GLI-1) expression (Bax/Bcl-2: Dex+ 50.0 μmol/L BA, 1.09 vs. Dex, 2.76, t = 35.12; cleaved caspase-3/caspase-3: Dex + 50.0 μmol/L BA, 0.38 vs . Dex, 0.73, t = 10.62; SHH: Dex + 50.0 μmol/L BA, 0.50 vs . Dex, 0.12, t = 34.01; SUFU: Dex+ 50.0 μmol/L BA, 0.75 vs . Dex, 1.19, t = 10.78; GLI-1: Dex+ 50.0 μmol/L BA, 0.40 vs . Dex, 0.11, t = 30.68. All P < 0.05).
CONCLUSIONS
BA antagonizes Dex-induced apoptosis of human BMSCs by activating the HH signaling pathway. It is a potential candidate for preventing SONFH.
Humans
;
Hedgehog Proteins/metabolism*
;
bcl-2-Associated X Protein
;
Caspase 3/metabolism*
;
Signal Transduction/physiology*
;
Apoptosis
;
Apoptosis Regulatory Proteins/pharmacology*
;
Dexamethasone/pharmacology*
;
Mesenchymal Stem Cells/metabolism*
;
Bone Marrow Cells
2.Research Advances on Strategies to Promote Homing and Engraftment of Hematopoietic Stem Cells--Review.
Ping-Ping ZHU ; Rui-Ting WEN ; Zhi-Gang YANG
Journal of Experimental Hematology 2023;31(4):1229-1232
The homing and engraftment of hematopoietic stem cells (HSC) into bone marrow is the first critical step for successful clinical hematopoietic stem cell transplantation (HSCT). SDF-1 / CXCR4 is considered to be a very promising target to promote HSC homing. In recent years, with the in-depth research on the HSC homing, a variety of new strategies for promoting HSC homing and engraftment have been explored, such as nuclear hormone receptor, histone deacetylase inhibitor, prostaglandin and metabolic regulation, so as to increase the success rate of HSCT and improve the survival of patients. In this review, the recent research advances in the mechanism of HSC homing and strategies to promote HSC homing and engraftment were summarized and discussed.
Humans
;
Hematopoietic Stem Cells/physiology*
;
Bone Marrow
;
Hematopoietic Stem Cell Transplantation
;
Gene Expression Regulation
;
Prostaglandins/metabolism*
3.Research Progress on the Mechanism of Macrophages Regulating Hematopoiesis in Bone Marrow Microenvironment--Review.
Yu-Han WANG ; Yue LI ; Shuang DING
Journal of Experimental Hematology 2023;31(4):1242-1246
Bone marrow macrophage is an important component of bone marrow microenvironment, which is closely related to hematopoietic regulation and hematopoietic stem cell transplantation(HSCT). Recent studies have shown that bone marrow macrophage is an important part of hematopoietic stem cell niche, which can help regulate the mobilization and function of hematopoietic stem/progenitor cells. After HSCT, the microenvironment of bone marrow is damaged and a large number of macrophages infiltrate into the bone marrow. Regulating the macrophage-related signal pathways can promote the recovery of hematopoiesis and the reconstruction of hematopoietic function. Co-culture of macrophages and hematopoietic stem cells (HSC) in vitro significantly increased the number of HSCs and their ability of clone formation, which suggests that macrophages play an important role in the regulation of hematopoiesis in the hematopoietic microenvironment of bone marrow. This paper reviews the recent research progress on the role of macrophages in bone marrow hematopoietic microenvironment.
Humans
;
Bone Marrow/metabolism*
;
Hematopoietic Stem Cells/physiology*
;
Hematopoiesis/physiology*
;
Stem Cell Niche
;
Macrophages/metabolism*
4.Effect of wheat-grain moxibustion on Wnt/β-catenin signaling pathway in bone marrow cell in mice with bone marrow inhibition.
Tao ZHU ; Yan-Ting CHENG ; Yan-Zhu MA ; Shuai ZHAO ; Xia LI
Chinese Acupuncture & Moxibustion 2023;43(1):67-71
OBJECTIVE:
To observe the effect of wheat-grain moxibustion at "Dazhui" (GV 14), "Zusanli" (ST 36) and "Sanyinjiao" (SP 6) on Wnt/β-catenin signaling pathway in bone marrow cell in mice with bone marrow inhibition, and to explore the possible mechanism of wheat-grain moxibustion in treating bone marrow inhibition.
METHODS:
Forty-five SPF male CD1(ICR) mice were randomly divided into a blank group, a model group and a wheat-grain moxibustion group, 15 mice in each group. The bone marrow inhibition model was established by intraperitoneal injection of 80 mg/kg of cyclophosphamide (CTX). The mice in the wheat-grain moxibustion group were treated with wheat-grain moxibustion at "Dazhui" (GV 14), "Zusanli" (ST 36) and "Sanyinjiao" (SP 6), 3 moxa cones per acupoint, 30 s per moxa cone, once a day, for 7 consecutive days. The white blood cell count (WBC) was measured before modeling, before intervention and 3, 5 d and 7 d into intervention. After intervention, the general situation of mice was observed; the number of nucleated cells in bone marrow was detected; the serum levels of interleukin-3 (IL-3), interleukin-6 (IL-6) and granulocyte macrophage colony stimulating factor (GM-CSF) were measured by ELISA; the protein and mRNA expression of β-catenin, cyclinD1 and C-Myc in bone marrow cells was measured by Western blot and real-time PCR method.
RESULTS:
Compared with the blank group, the mice in the model group showed sluggish reaction, unstable gait, decreased body weight, and the WBC, number of nucleated cells in bone marrow as well as serum levels of IL-3, IL-6, GM-CSF were decreased (P<0.01), and the protein and mRNA expression of β-catenin, cyclinD1 and C-Myc was decreased (P<0.01). Compared with the model group, the mice in the wheat-grain moxibustion group showed better general condition, and WBC, the number of nucleated cells in bone marrow as well as serum levels of IL-3, IL-6, GM-CSF were increased (P<0.01, P<0.05), and the protein and mRNA expression of β-catenin, cyclinD1 and C-Myc was increased (P<0.05).
CONCLUSION
Wheat-grain moxibustion shows therapeutic effect on bone marrow inhibition, and its mechanism may be related to activating Wnt/β-catenin signaling pathway in bone marrow cells, improving bone medullary hematopoiesis microenvironment and promoting bone marrow cell proliferation.
Animals
;
Male
;
Mice
;
beta Catenin/metabolism*
;
Bone Marrow/physiopathology*
;
Bone Marrow Cells/physiology*
;
Granulocyte-Macrophage Colony-Stimulating Factor/metabolism*
;
Interleukin-3/metabolism*
;
Interleukin-6/metabolism*
;
Mice, Inbred ICR
;
Moxibustion/methods*
;
RNA, Messenger/metabolism*
;
Triticum
;
Wnt Signaling Pathway
;
Hematopoiesis
5.Effect of PKM2 on Osteogenic and Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in Myeloma Bone Disease.
Jiang-Hua DING ; Shao-Lin YANG ; Shu-Lang ZHU
Journal of Experimental Hematology 2023;31(1):170-178
OBJECTIVE:
To investigate the expression of pyruvate kinase M2 (PKM2) in bone marrow mesenchymal stem cells (BMSCs) in myeloma bone disease (MBD) and its effect on osteogenic and adipogenic differentiation of BMSCs.
METHODS:
BMSCs were isolated from bone marrow of five patients with multiple myeloma (MM) (MM group) and five with iron deficiency anemia (control group) for culture and identification. The expression of PKM2 protein were compared between the two groups. The differences between osteogenic and adipogenic differentiation of BMSCs were assessed by using alkaline phosphatase (ALP) and oil red O staining, and detecting marker genes of osteogenesis and adipogenesis. The effect of MM cell line (RPMI-8226) and BMSCs co-culture on the expression of PKM2 was explored. Functional analysis was performed to investigate the correlations of PKM2 expression of MM-derived BMSCs with osteogenic and adipogenic differentiation by employing PKM2 activator and inhibitor. The role of orlistat was explored in regulating PKM2 expression, osteogenic and adipogenic differentiation of MM-derived BMSCs.
RESULTS:
Compared with control, MM-originated BMSCs possessed the ability of increased adipogenic and decreased osteogenic differentiation, and higher level of PKM2 protein. Co-culture of MM cells with BMSCs markedly up-regulated the expression of PKM2 of BMSCs. Up-regulation of PKM2 expression could promote adipogenic differentiation and inhibit osteogenic differentiation of MM-derived BMSCs, while down-regulation of PKM2 showed opposite effect. Orlistat significantly promoted osteogenic differentiation in MM-derived BMSCs via inhibiting the expression of PKM2.
CONCLUSION
The overexpression of PKM2 can induce the inhibition of osteogenic differentiation of BMSCs in MBD. Orlistat can promote the osteogenic differentiation of BMSCs via inhibiting the expression of PKM2, indicating a potential novel agent of anti-MBD therapy.
Humans
;
Adipogenesis
;
Bone Diseases/metabolism*
;
Bone Marrow Cells
;
Cell Differentiation
;
Cells, Cultured
;
Mesenchymal Stem Cells/physiology*
;
Multiple Myeloma/metabolism*
;
Orlistat/pharmacology*
;
Osteogenesis/genetics*
6.Characteristic comparison of mouse primary macrophages cultured in L929 cell conditioned medium.
Wei WANG ; Yi QIN ; Yaru WANG ; Jiejie ZOU ; Jing CHEN ; Jinwu CHEN ; Yan ZHANG ; Ming GENG ; Zhongdong XU ; Min DAI ; Lilong PAN
Chinese Journal of Biotechnology 2020;36(7):1431-1439
The purpose of this study is to provide a culture for mouse bone marrow-derived macrophages (BMDM) and peritoneal macrophages (PM) and to characterize their molecular and cellular biology. The cell number and purity from the primary culture were assessed by cell counter and flow cytometry, respectively. Morphological features were evaluated by inverted microscope. Phagocytosis by macrophages was detected by the neutral red dye uptake assay. Phenotypic markers were analyzed by real-time fluorescent quantitative PCR. Our results show that the cell number was much higher from culture of BMDM than PM, while there was no significant difference regarding the percentage of F4/80+CD11b+ cells (98.30%±0.53% vs. 94.83%±1.42%; P>0.05). The proliferation rate of BMDM was significantly higher than PM in the presence of L929 cell conditioned medium, by using CCK-8 assay. However, PM appeared to adhere to the flask wall and extend earlier than BMDM. The phagocytosis capability of un-stimulated BMDM was significantly higher than PM, as well as lipopolysaccharide (LPS)-stimulated BMDM, except the BMDM stimulated by low dose LPS (0.1 μg/mL). Furthermore, Tnfα expression was significantly higher in un-stimulated BMDM than PM, while Arg1 and Ym1 mRNA expression were significantly lower than PM. The expression difference was persistent if stimulated by LPS+IFN-γ or IL-4. Our data indicate that bone marrow can get larger amounts of macrophages than peritoneal cavity. However, it should be aware that the molecular and cellular characteristics were different between these two culture systems.
Animals
;
Bone Marrow Cells
;
physiology
;
Cells, Cultured
;
Culture Media, Conditioned
;
Lipopolysaccharides
;
metabolism
;
Macrophages
;
classification
;
physiology
;
Mice
;
Phagocytosis
7.Effect of Matrix Metallopeptidase 13 on the Function of Mouse Bone Marrow-derived Dendritic Cells.
Xiao-Dong LI ; Xin-Rui ZHANG ; Zhi-Hao LI ; Yang YANG ; Duo ZHANG ; Heng ZHENG ; Shu-Ying DONG ; Juan CHEN ; Xian-Dong ZENG
Chinese Medical Journal 2017;130(6):717-721
BACKGROUNDDendritic cells are professional antigen-presenting cells found in an immature state in epithelia and interstitial space, where they capture antigens such as pathogens or damaged tissue. Matrix metallopeptidase 13 (MMP-13), a member of the collagenase subfamily, is involved in many different cellular processes and is expressed in murine bone marrow-derived dendritic cells (DCs). The function of MMP-13 in DCs is not well understood. Here, we investigated the effect of MMP-13 on DC maturation, apoptosis, and phagocytosis.
METHODSBone marrow-derived dendritic cells were obtained from C57BL/6 mice. One short-interfering RNA specific for MMP-13 was used to transfect DCs. MMP-13-silenced DCs and control DCs were prepared, and apoptosis was measured using real-time polymerase chain reaction and Western blotting. MMP-13-silenced DCs and control DCs were analyzed for surface expression of CD80 and CD86 and phagocytosis capability using flow cytometry.
RESULTSCompared to the control DCs, MMP-13-silenced DCs increased expression of anti-apoptosis-related genes, BAG1 (control group vs. MMP-13-silenced group: 4.08 ± 0.60 vs. 6.11 ± 0.87, P = 0.008), BCL-2 (control group vs. MMP-13-silenced group: 7.54 ± 0.76 vs. 9.54 ± 1.29, P = 0.036), and TP73 (control group vs. MMP-13-silenced group: 4.33 ± 0.29 vs. 5.60 ± 0.32, P = 0.001) and decreased apoptosis-related genes, CASP1 (control group vs. MMP-13-silenced group: 3.79 ± 0.67 vs. 2.54 ± 0.39, P = 0.019), LTBR (control group vs. MMP-13-silenced group: 9.23 ± 1.25 vs. 6.24 ± 1.15, P = 0.012), and CASP4 (control group vs. MMP-13-silenced group: 2.07 ± 0.56 vs. 0.35 ± 0.35, P = 0.002). Protein levels confirmed the same expression pattern. MMP-13-silenced groups decreased expression of CD86 on DCs; however, there was no statistical difference in CD80 surface expression. Furthermore, MMP-13-silenced groups exhibited weaker phagocytosis capability.
CONCLUSIONThese results indicate that MMP-13 inhibition dampens DC maturation, apoptosis, and phagocytosis.
Animals ; Apoptosis ; drug effects ; physiology ; Bone Marrow Cells ; cytology ; Dendritic Cells ; cytology ; drug effects ; metabolism ; Female ; Lipopolysaccharides ; pharmacology ; Matrix Metalloproteinase 13 ; metabolism ; physiology ; Mice ; Mice, Inbred C57BL ; RNA, Small Interfering
8.Vascular endothelial growth factor secreted by breast cancer cells plays a critical role in the formation of pre-metastatic niche in the mouse lung.
Ranran LI ; Bing YUAN ; Ying ZHANG ; Jianjian DAI ; Pengfei ZHANG ; Feifei FANG ; Mingyong HAN
Chinese Journal of Oncology 2016;38(1):17-22
OBJECTIVETo explore the formation of pre-metastatic niche in the mouse lung and to study the underlying molecular mechanisms whereby primary breast carcinoma-derived factors mediate recruitment of bone marrow-derived cells (BMDCs) and affect the formation of pre-metastatic lung environment before the arrival of tumor cells.
METHODSMammary carcinoma 4T1 cells were inoculated into the mammary gland to construct mouse model of breast cancer. Confocal microscopy was used to detect the recruitment of BMDCs in the pre-metastatic lungs. The expression of factors in the mouse sera and 4T1 cell culture media was assayed using RayBio Custom mouse cytokine antibody array kit. The mice were injected daily with recombinant VEGF for 7 consecutive days to observe the effect of VEGF on BMDCs recruitment in the mouse lung.
RESULTSNo BMDCs were observed in the lungs of control and 4T1-tumor-bearing mice on day 0. On day 7 and 14, clusters of BMDCs observed in the lungs of 4T1-tumor-bearing mice were 8.7±2.2/objective field and 48.8±3.2/objective field, respectively, significantly higher than those in the control mice (1.1±0.8/objective field and 3.1±1.7/objective field) (P<0.05 for both). Confocal microscopic observation found that metastatic breast cancer cells preferentially facilitate BMDCs recruitment sites in the pre-metastatic mouse lungs. The levels of VEGF, GM-CSF, and IL-6 in the serum of 4T1-tumor-bearing mice were significantly increased compared with those in the control group (P<0.05 for all). However, VEGF was detected only in the culture media of 4T1 cells. The amount of BMDCs in the mouse lung tissue was (22.8±3.6)/objective field in the VEGF group and (3.1±0.4)/objective field in the control group (P<0.05). There were 36.8±5.4 metastatic foci in the lung tissue of VEGF group and 12.6±2.2 in the control group (P<0.05).
CONCLUSIONSThe results of this study demonstrate that primary breast cancer cells can alter the lung microenvironment during the pre-metastatic phase and induce the formation of pre-metastatic niche. Primary tumor cell-derived VEGF may be a crucial factor responsible for the formation of pre-metastatic niche.
Animals ; Bone Marrow Cells ; Breast Neoplasms ; metabolism ; pathology ; Cell Line, Tumor ; Disease Models, Animal ; Female ; Granulocyte-Macrophage Colony-Stimulating Factor ; blood ; Humans ; Interleukin-6 ; blood ; Lung ; pathology ; Lung Neoplasms ; secondary ; Mice ; Recombinant Proteins ; administration & dosage ; Time Factors ; Tumor Microenvironment ; Vascular Endothelial Growth Factor A ; administration & dosage ; physiology ; secretion
9.Possible Mechanism of Therapeutic Effect of 3-Methyl-1-phenyl-2-pyrazolin-5-one and Bone Marrow Stromal Cells Combination Treatment in Rat Ischemic Stroke Model.
Li-Hua SHEN ; Jin CHEN ; Hua-Chao SHEN ; Min YE ; Xiao-Fei LIU ; Wen-Sen DING ; Ya-Feng SHENG ; Xin-Sheng DING ;
Chinese Medical Journal 2016;129(12):1471-1476
BACKGROUNDThe functional improvement following bone marrow stromal cells (BMSCs) transplantation after stroke is directly related to the number of engrafted cells and neurogenesis in the injured brain. Here, we tried to evaluate whether 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186), a free radical scavenger, might influence BMSCs migration to ischemic brain, which could promote neurogenesis and thereby enhance treatment effects after stroke.
METHODSRat transient middle cerebral artery occlusion (MCAO) model was established. Two separate MCAO groups were administered with either MCI-186 or phosphate-buffered saline (PBS) solution to evaluate the expression of stromal cell-derived factor-1 (SDF-1) in ischemic brain, and compared to that in sham group (n = 5/ group/time point[at 1, 3, and 7 days after operation]). The content of chemokine receptor-4 (CXCR4, a main receptor of SDF-1) at 7 days after operation was also observed on cultured BMSCs. Another four MCAO groups were intravenously administered with either PBS, MCI-186, BMSCs (2 × 106), or a combination of MCI-186 and BMSCs (n = 10/group). 5-bromo-2-deoxyuridine (BrdU) and Nestin double-immunofluorescence staining was performed to identify the engrafted BMSCs and neuronal differentiation. Adhesive-removal test and foot-fault evaluation were used to test the neurological outcome.
RESULTSMCI-186 upregulated the expression of SDF-1 in ischemic brain and CXCR4 content in BMSCs was enhanced after hypoxic stimulation. When MCAO rats were treated with either MCI-186, BMSCs, or a combination of MCI-186 and BMSCs, the neurologic function was obviously recovered as compared to PBS control group (P < 0.01 or 0.05, respectively). Combination therapy represented a further restoration, increased the number of BMSCs and Nestin+ cells in ischemic brain as compared with BMSCs monotherapy (P < 0.01). The number of engrafted-BMSCs was correlated with the density of neuronal cells in ischemic brain (r = 0.72 , P < 0.01) and the improvement of foot-fault (r = 0.70, P < 0.01).
CONCLUSIONMCI-186 might promote BMSCs migration to the ischemic brain, amplify the neurogenesis, and improve the effects of cell therapy.
Animals ; Antipyrine ; analogs & derivatives ; therapeutic use ; Bone Marrow Cells ; cytology ; physiology ; Brain Ischemia ; drug therapy ; metabolism ; therapy ; Chemokine CXCL12 ; metabolism ; Disease Models, Animal ; Infarction, Middle Cerebral Artery ; drug therapy ; metabolism ; therapy ; Male ; Mesenchymal Stromal Cells ; physiology ; Neurogenesis ; physiology ; Rats ; Rats, Sprague-Dawley ; Stroke ; drug therapy ; metabolism ; therapy
10.BM-MSCs from Wuzhishan mini-pigs delay the progress of renal fibrosis induced by chronic kidney disease through autocrine hepatocyte growth factor in vitro.
Yang XIANG ; Jiale LONG ; Jiansheng XING ; Yuanhui GAO ; Qing CHENG ; Yong CAI ; Zhenxiang LIU ; Shufang ZHANG ; Lie CHEN ; Chao YANG ; Zhiming BAI
Journal of Central South University(Medical Sciences) 2016;41(12):1260-1269
To isolate bone marrow mesenchymal stem cells (BM-MSCs) and establish the model of chronic kidney disease (CKD) of Wuzhishan (WZS) mini-pig, and to study the repairment effect of BM-MSCs on CKD-induced renal fibrosis in vitro.
Methods: Density gradient method was used to isolate and culture BM-MSCs. The cells were verified by morphology, phenotype, differentiation and so on. The left partial ureteral obstruction (LPUUO) was used to establish the CKD model, which was evaluated by B-ultrasound, single-photon emission computed tomography (SPECT), HE and Masson staining. The cells were divided into 3 groups, the tissue plus BM-MSCs group, the tissue group, and the BM-MSCs group, respectively. Seven days later, the supernatants were collected to observe the changes of hepatocyte growth factor (HGF) cumulative release. HE and Masson staining was used to observe the changes of renal tissue.
Results: The isolated BM-MSCs possessed the features as follow: fibroblast-like adherent growth; positive in CD29 and CD90 expression while negative in CD45 expression; osteogenic induction and alizarin red staining were positive; alcian blue staining were positive after chondrogenic induction. Twelve weeks after the operation of LPUUO, B-ultrasound showed the thin renal cortical with pelvis effusion; SPETCT showed the left kidney delayed filling and renal impairment. The accumulation of HGF in the tissue plus BM-MSCs group was significantly higher than that in the tissue alone group at the 1st, 5th, 6th, 7th day, respectively (P<0.05). HE staining showed the different degree of renal lesions between the tissue plus BM-MSCs+CKD group and the tissue alone group, which was aggravated with the time going. Masson staining showed that the cumulative optical density of blue-stained collagen fibers in tissue plus BM-MSCs group was significantly lower than that in the tissue group at the 5th to 7th day (P<0.05).
Conclusion: BM-MSCs from WZS mini-pig can inhibit or delay the progress of CKD-induced renal fibrosis through autocrine HGF in vitro.
Animals
;
Autocrine Communication
;
physiology
;
Bone Marrow Cells
;
Cells, Cultured
;
Fibrosis
;
physiopathology
;
prevention & control
;
Hepatocyte Growth Factor
;
metabolism
;
Kidney
;
drug effects
;
pathology
;
physiopathology
;
Mesenchymal Stem Cells
;
drug effects
;
Renal Insufficiency, Chronic
;
complications
;
physiopathology
;
Swine
;
Swine, Miniature
;
Ureteral Obstruction
;
complications

Result Analysis
Print
Save
E-mail