1.Different effects of long-term and short-term repeated restraints on the hematopoietic stem cells in mice.
Chen-Ke MA ; Xian WU ; Zhe XU ; Jian LIU ; Ji-Yan ZHANG ; Tao-Xing SHI
Acta Physiologica Sinica 2020;72(2):167-174
Humans with chronic psychological stress are prone to develop multiple disorders of body function including impairment of immune system. Chronic psychological stress has been reported to have negative effects on body immune system. However, the underlying mechanisms have not been clearly demonstrated. All immune cells are derived from hematopoietic stem cells (HSC) in the bone marrow, including myeloid cells which comprise the innate immunity as a pivotal component. In this study, to explore the effects of chronic psychological stress on HSC and myeloid cells, different repeated restraint sessions were applied, including long-term mild restraint in which mice were individually subjected to a 2 h restraint session twice daily (morning and afternoon/between 9:00 and 17:00) for 4 weeks, and short-term vigorous restraint in which mice were individually subjected to a 16 h restraint session (from 17:00 to 9:00 next day) for 5 days. At the end of restraint, mice were sacrificed and the total cell numbers in the bone marrow and peripheral blood were measured by cell counting. The proportions and absolute numbers of HSC (LinCD117Sca1CD150CD48) and myeloid cells (CD11bLy6C) were detected by fluorescence activated cell sorting (FACS) analysis. Proliferation of HSC was measured by BrdU incorporation assay. The results indicated that the absolute number of HSC was increased upon long-term mild restraint, but was decreased upon short-term vigorous restraint with impaired proliferation. Both long-term mild restraint and short-term vigorous restraint led to the accumulation of CD11bLy6C cells in the bone marrow as well as in the peripheral blood, as indicated by the absolute cell numbers. Taken together, long-term chronic stress led to increased ratio and absolute number of HSC in mice, while short-term stress had opposite effects, which suggests that stress-induced accumulation of CD11bLy6C myeloid cells might not result from increased number of HSC.
Animals
;
Antigens, Ly
;
metabolism
;
Bone Marrow Cells
;
cytology
;
CD11b Antigen
;
metabolism
;
Cell Proliferation
;
Hematopoietic Stem Cells
;
cytology
;
Mice
;
Mice, Inbred C57BL
;
Restraint, Physical
;
Stress, Psychological
2.Comparison of the Biological Functions between Human Bone Marrow Derived CD106 Mesenchymal Stem Cells and CD106 Subgroup.
Shi Hong LU ; Mei GE ; Ya Hong YOU ; Jia HUO ; Hao Yue LIANG ; Wen Ying YU ; Dong Lin YANG ; Si Zhou FENG ; Zhong Chao HAN
Acta Academiae Medicinae Sinicae 2019;41(4):443-451
Objective To analyze the differences in biological functions between bone marrow(BM)-derived CD106 mesenchymal stem cells(MSCs)and the CD106 subgroup. Methods The MSCs from normal BM were isolated and expanded.The subgroups of CD106 and CD106 MSCs were sorted.The cell proliferation and adhesion functions,chemotactic activities,adipogenic and osteogenic potentials,senescence,and senescence protein 21(p21)were detected.The capacity of translocation into nucleus of nuclear factor-kappa B(NF-κB)when stimulated by tumor necrosis factor(TNF-α)was measured. Results The proliferative ability was higher in CD106 MSCs than that in CD106 MSCs.In 48 hours,the value of optical density(OD)was significantly higher in CD106 MSCs than that in CD106 subgroup(1.004±0.028 0.659±0.023,=3.946,=0.0225).In 72 hours,this phenomenon was even more pronounced(2.574±0.089 1.590±0.074,=11.240,=0.0000).The adhesive capacity of CD106 MSCs was significantly stronger than that of CD106 subgroup(0.648±0.018 0.418±0.023,=7.869,=0.0002).Besides,the metastasis ability of CD106 MSCs were significantly stronger than that of CD106 subgroup(114.500±4.481 71.000±4.435,=6.900,=0.0005).The CD106 MSCs had signifcnatly lower proportions of senescent cells.The expression of aging protein p21 in CD106 MSCs was significantly lower than that in CD106 MSCs [(17.560±1.421)% (45.800±2.569)%,=9.618,=0.0000].Furthermore,there were no visible pigmenting cells after β-galactosidase staining in CD106 MSCs subgroup.However,in CD106 MSCs,some colored green cells were detected.The rate of NF-κB translocation into nucleus after stimulated by TNF-α was significantly higher in CD106 MSCs than CD106 MSCs [(37.780±3.268)% (7.30±1.25)%,=8.713,=0.0001]. Conclusion Bone marrow-derived CD106 MSCs possess more powerful biological functions than CD106 MSCs.
Bone Marrow Cells
;
cytology
;
Cell Adhesion
;
Cell Differentiation
;
Cell Proliferation
;
Cells, Cultured
;
Humans
;
Mesenchymal Stem Cells
;
cytology
;
NF-kappa B
;
metabolism
;
Protein Transport
;
Tumor Necrosis Factor-alpha
;
pharmacology
;
Vascular Cell Adhesion Molecule-1
;
metabolism
3.MiR-1180 from bone marrow-derived mesenchymal stem cells induces glycolysis and chemoresistance in ovarian cancer cells by upregulating the Wnt signaling pathway.
Zhuo-Wei GU ; Yi-Feng HE ; Wen-Jing WANG ; Qi TIAN ; Wen DI
Journal of Zhejiang University. Science. B 2019;20(3):219-237
BACKGROUND:
Bone marrow-derived mesenchymal stem cells (BM-MSCs) play an important role in cancer development and progression. However, the mechanism by which they enhance the chemoresistance of ovarian cancer is unknown.
METHODS:
Conditioned media of BM-MSCs (BM-MSC-CM) were analyzed using a technique based on microRNA arrays. The most highly expressed microRNAs were selected for testing their effects on glycolysis and chemoresistance in SKOV3 and COC1 ovarian cancer cells. The targeted gene and related signaling pathway were investigated using in silico analysis and in vitro cancer cell models. Kaplan-Merier survival analysis was performed on a population of 59 patients enrolled to analyze the clinical significance of microRNA findings in the prognosis of ovarian cancer.
RESULTS:
MiR-1180 was the most abundant microRNA detected in BM-MSC-CM, which simultaneously induces glycolysis and chemoresistance (against cisplatin) in ovarian cancer cells. The secreted frizzled-related protein 1 (SFRP1) gene was identified as a major target of miR-1180. The overexpression of miR-1180 led to the activation of Wnt signaling and its downstream components, namely Wnt5a, β-catenin, c-Myc, and CyclinD1, which are responsible for glycolysis-induced chemoresistance. The miR-1180 level was inversely correlated with SFRP1 mRNA expression in ovarian cancer tissue. The overexpressed miR-1180 was associated with a poor prognosis for the long-term (96-month) survival of ovarian cancer patients.
CONCLUSIONS
BM-MSCs enhance the chemoresistance of ovarian cancer by releasing miR-1180. The released miR-1180 activates the Wnt signaling pathway in cancer cells by targeting SFRP1. The enhanced Wnt signaling upregulates the glycolytic level (i.e. Warburg effect), which reinforces the chemoresistance property of ovarian cancer cells.
Adenosine Triphosphate/chemistry*
;
Adult
;
Aged
;
Bone Marrow Cells/cytology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Cells, Cultured
;
Drug Resistance, Neoplasm/genetics*
;
Female
;
Flow Cytometry
;
Follow-Up Studies
;
Glycolysis
;
Humans
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Membrane Proteins/metabolism*
;
Mesenchymal Stem Cells/cytology*
;
MicroRNAs/genetics*
;
Middle Aged
;
Multivariate Analysis
;
Ovarian Neoplasms/genetics*
;
Up-Regulation
;
Wnt Signaling Pathway
4.A Case of Therapy-Related Acute Leukemia With Mixed Phenotype With BCR-ABL1 After Treatment of Diffuse Large B-Cell Lymphoma.
Dahae YANG ; Sung Ran CHO ; Seri JUNG ; Woonhyoung LEE ; Hyun Yong HWANG ; Ho Seop LEE ; Yang Soo KIM ; Jong Rak CHOI ; Mi Hyang KIM
Annals of Laboratory Medicine 2017;37(2):166-168
No abstract available.
Aged
;
Antineoplastic Combined Chemotherapy Protocols/adverse effects
;
Bone Marrow Cells/cytology/pathology
;
Female
;
Flow Cytometry
;
Fusion Proteins, bcr-abl/*genetics
;
Granulocyte Colony-Stimulating Factor/therapeutic use
;
Humans
;
Immunophenotyping
;
Leukemia/*diagnosis/etiology
;
Lymphoma, Large B-Cell, Diffuse/*drug therapy
;
Phenotype
;
Rituximab/administration & dosage
5.Familial Hemophagocytic Lymphohistiocytosis Type 2 in a Korean Infant With Compound Heterozygous PRF1 Defects Involving a PRF1 Mutation, c.1091T>G.
Min Sun KIM ; Young Uk CHO ; Seongsoo JANG ; Eul Ju SEO ; Ho Joon IM ; Chan Jeoung PARK
Annals of Laboratory Medicine 2017;37(2):162-165
No abstract available.
Asian Continental Ancestry Group/*genetics
;
Base Sequence
;
Bone Marrow Cells/cytology/pathology
;
Cytomegalovirus Infections/diagnosis
;
Epstein-Barr Virus Infections/diagnosis
;
Female
;
Flow Cytometry
;
Heterozygote
;
Humans
;
Infant
;
Killer Cells, Natural/cytology/immunology
;
Lymphohistiocytosis, Hemophagocytic/*diagnosis/genetics
;
Perforin/*genetics
;
Phagocytosis
;
Polymorphism, Single Nucleotide
;
Republic of Korea
;
Sequence Analysis, DNA
6.Effect of Matrix Metallopeptidase 13 on the Function of Mouse Bone Marrow-derived Dendritic Cells.
Xiao-Dong LI ; Xin-Rui ZHANG ; Zhi-Hao LI ; Yang YANG ; Duo ZHANG ; Heng ZHENG ; Shu-Ying DONG ; Juan CHEN ; Xian-Dong ZENG
Chinese Medical Journal 2017;130(6):717-721
BACKGROUNDDendritic cells are professional antigen-presenting cells found in an immature state in epithelia and interstitial space, where they capture antigens such as pathogens or damaged tissue. Matrix metallopeptidase 13 (MMP-13), a member of the collagenase subfamily, is involved in many different cellular processes and is expressed in murine bone marrow-derived dendritic cells (DCs). The function of MMP-13 in DCs is not well understood. Here, we investigated the effect of MMP-13 on DC maturation, apoptosis, and phagocytosis.
METHODSBone marrow-derived dendritic cells were obtained from C57BL/6 mice. One short-interfering RNA specific for MMP-13 was used to transfect DCs. MMP-13-silenced DCs and control DCs were prepared, and apoptosis was measured using real-time polymerase chain reaction and Western blotting. MMP-13-silenced DCs and control DCs were analyzed for surface expression of CD80 and CD86 and phagocytosis capability using flow cytometry.
RESULTSCompared to the control DCs, MMP-13-silenced DCs increased expression of anti-apoptosis-related genes, BAG1 (control group vs. MMP-13-silenced group: 4.08 ± 0.60 vs. 6.11 ± 0.87, P = 0.008), BCL-2 (control group vs. MMP-13-silenced group: 7.54 ± 0.76 vs. 9.54 ± 1.29, P = 0.036), and TP73 (control group vs. MMP-13-silenced group: 4.33 ± 0.29 vs. 5.60 ± 0.32, P = 0.001) and decreased apoptosis-related genes, CASP1 (control group vs. MMP-13-silenced group: 3.79 ± 0.67 vs. 2.54 ± 0.39, P = 0.019), LTBR (control group vs. MMP-13-silenced group: 9.23 ± 1.25 vs. 6.24 ± 1.15, P = 0.012), and CASP4 (control group vs. MMP-13-silenced group: 2.07 ± 0.56 vs. 0.35 ± 0.35, P = 0.002). Protein levels confirmed the same expression pattern. MMP-13-silenced groups decreased expression of CD86 on DCs; however, there was no statistical difference in CD80 surface expression. Furthermore, MMP-13-silenced groups exhibited weaker phagocytosis capability.
CONCLUSIONThese results indicate that MMP-13 inhibition dampens DC maturation, apoptosis, and phagocytosis.
Animals ; Apoptosis ; drug effects ; physiology ; Bone Marrow Cells ; cytology ; Dendritic Cells ; cytology ; drug effects ; metabolism ; Female ; Lipopolysaccharides ; pharmacology ; Matrix Metalloproteinase 13 ; metabolism ; physiology ; Mice ; Mice, Inbred C57BL ; RNA, Small Interfering
7.Acute Myeloid Leukemia With MLL Rearrangement and CD4+/CD56+ Expression can be Misdiagnosed as Blastic Plasmacytoid Dendritic Cell Neoplasm: Two Case Reports.
Ju Mee LEE ; In Suk KIM ; Jeong Nyeo LEE ; Sang Hyuk PARK ; Hyung Hoi KIM ; Chulhun L CHANG ; Eun Yup LEE ; Hye Ran KIM ; Seung Hwan OH ; Sae Am SONG
Annals of Laboratory Medicine 2016;36(5):494-497
No abstract available.
Adult
;
Antigens, CD4/*metabolism
;
Antigens, CD56/*metabolism
;
Bone Marrow/metabolism/pathology
;
Dendritic Cells/cytology/*metabolism
;
Diagnostic Errors
;
Exons
;
Female
;
Flow Cytometry
;
Gene Rearrangement
;
Hematologic Neoplasms/diagnosis
;
Histone-Lysine N-Methyltransferase/genetics
;
Humans
;
Immunohistochemistry
;
In Situ Hybridization, Fluorescence
;
Leukemia, Myeloid, Acute/*diagnosis
;
Male
;
Middle Aged
;
Myeloid-Lymphoid Leukemia Protein/genetics
;
Real-Time Polymerase Chain Reaction
;
Sequence Analysis, DNA
;
Transcription Factors/genetics
;
Translocation, Genetic
8.Application of tendon-derived stem cells and bone marrow-derived mesenchymal stem cells for tendon injury repair in rat model.
Xiangpeng KONG ; Ming NI ; Guoqiang ZHANG ; Wei CHAI ; Xiang LI ; Yucong LI ; Yan WANG
Journal of Zhejiang University. Medical sciences 2016;45(2):112-119
OBJECTIVETo evaluate the application of tendon-derived stem cells (TDSC) and bone marrow-derived mesenchymal stem cells (BMSC) for patellar tendon injury repair in rat model.
METHODSTDSCs and BMSCs were isolated from patellar tendons or bone marrow of healthy SD rats. The patellar tendon injury model was induced in 60 SD rats, then the animals were divided into 3 groups with 20 in each group: rats in TDSC group received transplantation of TDSC with fibrin glue in defected patellar tendon, rats in BMSC group received BMSC with fibrin glue for transplantation and those in control group received fibrin glue only. The gross morphology, histology and biomechanics of the patellar tendon were examined at 1, 2, 4, 6 and 8 weeks after the treatment.
RESULTSGross observation showed that the tendon defects in TDSC group and BMSC group almost disappeared in week 8, while the boundary of tendon defects in control group was still visible. Histology examination showed that the neo-tendon formation in TDSC group and BMSC group was observed at week 8, while there was no neo-tendon formation in control group. Biomechanics study showed that the ultimate stress and Young Modulus, relative ultimate stress and relative Young Modulus increased with the time going in all groups(all P<0.05); the ultimate stress and Young Modulus, relative ultimate stress and relative Young Modulus of TDSC and BMSC groups were significantly higher than those in control group at week 4, 6 and 8(all P<0.05). There was no difference in ultimate stress and Young Modulus between TDSC group and BMSC group(P>0.05), however, the relative Young Modulus of TDSC group was significantly higher than that in BMSC group at week 8(P<0.05).
CONCLUSIONAllogeneic TDSC and BMSC transplantation facilitates the repair of tendon injury and improves the biomechanics of tendon. TDSC is more suitable for in vivo tendon regeneration than BMSC.
Animals ; Bone Marrow ; Elastic Modulus ; Mesenchymal Stromal Cells ; cytology ; Rats ; Rats, Sprague-Dawley ; Regeneration ; Tendon Injuries ; therapy ; Tendons ; cytology ; Wound Healing
9.Effect of MicroRNA-146a on Differentiation Potential of Human Bone Marrow Mesenchymal Stem Cells.
Xu YE ; Xing-Bing WANG ; Jian WANG ; Jing MING
Journal of Experimental Hematology 2016;24(2):596-601
OBJECTIVETo explore the effect of MicroRNA-146a (miR-146a) on the ability of BM-MSC to differentiate into adipocytes and osteoblasts.
METHODSBM-MSC were isolated from the bone marrow of healthy donors. The differentiation of BM-MSC into adipocytes and osteoblasts cells were done in vitro. After transfection with miR-146a inhibitor or mimics, the expression of miR-146a in BM-MSC was detected by real time quantitative PCR. The effect of MicroRNA-146a on the differentiation potential of BM-MSC was evaluated after transfection.
RESULTSBM-MSC possessed the ability to differentiate into adipocytes and osteoblasts cells when cultured in the induction medium. The expression of miR-146a was correspondingly down-regulated and up-regulated in BM-MSC after transfection. Compared with the control group, the expression of miR-146a was down-regulated (P < 0.01) after transfection with miR-146a inhibitor, while after transfection with miR-146a mimics it was significantly up-regulated. This study proved that the transfection with miR-146a inhibitor can inhibit BM-MSC differentiate into adipocytes (P < 0.01), while transfection with miR-146a mimics can promote differentiation of BM-MSC into adipocytes (P < 0.01). No effect of miR-146a inhibitor or miR-146a mimics on osteogenic differentiation of BM-MSC was observed (P > 0.05).
CONCLUSIONBM-MSC possess the ability to differentiate into adipocytes and osteoblasts. The miR-146a can promote BM-MSC to differentiate into adipocytes.
Adipocytes ; cytology ; Bone Marrow Cells ; cytology ; Cell Differentiation ; Cells, Cultured ; Humans ; Mesenchymal Stromal Cells ; cytology ; MicroRNAs ; metabolism ; Osteoblasts ; cytology ; Osteogenesis ; Transfection
10.Therapeutic Effect of Combined Cytokines on Nonhuman Primate Model of Severe Haemopoietic Acute Radiation Sickness.
Yan-Chao MA ; Ming LI ; Shuang XING ; Guo-Lin XIONG ; Xing SHEN ; Qiu CHEN ; Yu-Wen CONG ; Jin-Xiang WANG ; Nan-Kang ZHU ; Zu-Yin YU ; Xue-Guang ZHANG
Journal of Experimental Hematology 2016;24(2):573-579
OBJECTIVETo evaluate the therapeutic effects of combined administration of recombinant human granulocyte colony-stimulating factor (rhG-CSF), recombinant human thrombopoietin (rhTPO) and recombinant human interleukin-2 (rhIL-2) on radiation-induced severe haemopoietic acute radiation sickness (ARS) in rhesus monkeys, so as to provide experimental evidences for the effective clinical treatment.
METHODSSeventeen rhesus monkeys were exposed to 7.0 Gy (60)Co γ-ray total body irradiation (TBI) to establish severe haemopoietic ARS model, and were randomly divided into supportive care group, rhG-CSF+rhTPO treatment group and rhG-CSF+rhTPO+rhIL-2 treatment group. Survival time, general signs such as bleeding and infections, and peripheral blood cell counts in each group were monitored. Bone marrow cells were cultivated to examine the colony formation ability. The histomorphology changes of bone marrow were observed at 45 d post irradiation.
RESULTSAfter 7.0 Gy (60)Co γ-ray TBI, monkeys of supportive care group underwent tarry stool and emesis, then died in 12~18 d. The overall survival rate in this group was 16.7%. Gastrointestinal reactions of monkeys in two combined-cytokines treatment groups were inapparent. Combined-cytokines treatment induced 100% survival. Complete blood cells declined sharply after irradiation in each group, but two combined-cytokines treatment schemes could elevate the nadir of all blood cells, shorten the duration of pancytopenia and accelerate the recovery of hemogram. Compared with rhG-CSF+ rhTPO treatment, rhG-CSF+ rhTPO+ rhIL-2 treatment could increase the counts of lymphocytes and monocytes. The colony-formation rate of haemopoietic stem/progenitor cells in bone marrow dropped markedly at 2 d after irradiation. Combined-cytokines treatment promoted the ability of colony formation on day 29. Hematopoietic cells mostly disappeared in bone marrow of animals in supportive care group, but hematopoietic functions were recovered after cytokines were administrated.
CONCLUSIONrhG-CSF+ rhTPO and rhG-CSF+ rhTPO+ rhIL-2 treatment can significantly promote hematopoiesis recovery, improve the quantity of life, simplify the supportive therapy, and enhance the survival rate of rhesus monkeys with severe haemopoietic ARS induced by 7.0 Gy (60)Co γ-ray exposure. Especially the application of rhIL-2 can accelerate the recovery of lymphocytes and monocytes and restore the immunological function. Thus, combination of rhG-CSF, rhTPO and rhIL-2 on the basis of supportive care is an efficient strategy to treat severe haemopoietic ARS.
Animals ; Bone Marrow ; pathology ; Bone Marrow Cells ; pathology ; Gamma Rays ; Granulocyte Colony-Stimulating Factor ; pharmacology ; Hematopoiesis ; drug effects ; Hematopoietic Stem Cells ; cytology ; Humans ; Interleukin-2 ; pharmacology ; Macaca mulatta ; Radiation Injuries ; drug therapy ; Random Allocation ; Recombinant Proteins ; therapeutic use ; Thrombopoietin ; pharmacology ; Whole-Body Irradiation

Result Analysis
Print
Save
E-mail