1.Impaired autophagy activity-induced abnormal differentiation of bone marrow stem cells is related to adolescent idiopathic scoliosis osteopenia.
Hongqi ZHANG ; Guanteng YANG ; Jiong LI ; Lige XIAO ; Chaofeng GUO ; Yuxiang WANG
Chinese Medical Journal 2023;136(17):2077-2085
BACKGROUND:
Osteopenia has been well documented in adolescent idiopathic scoliosis (AIS). Bone marrow stem cells (BMSCs) are a crucial regulator of bone homeostasis. Our previous study revealed a decreased osteogenic ability of BMSCs in AIS-related osteopenia, but the underlying mechanism of this phenomenon remains unclear.
METHODS:
A total of 22 AIS patients and 18 age-matched controls were recruited for this study. Anthropometry and bone mass were measured in all participants. Bone marrow blood was collected for BMSC isolation and culture. Osteogenic and adipogenic induction were performed to observe the differences in the differentiation of BMSCs between the AIS-related osteopenia group and the control group. Furthermore, a total RNA was extracted from isolated BMSCs to perform RNA sequencing and subsequent analysis.
RESULTS:
A lower osteogenic capacity and increased adipogenic capacity of BMSCs in AIS-related osteopenia were revealed. Differences in mRNA expression levels between the AIS-related osteopenia group and the control group were identified, including differences in the expression of LRRC17 , DCLK1 , PCDH7 , TSPAN5 , NHSL2 , and CPT1B . Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed several biological processes involved in the regulation of autophagy and mitophagy. The Western blotting results of autophagy markers in BMSCs suggested impaired autophagic activity in BMSCs in the AIS-related osteopenia group.
CONCLUSION
Our study revealed that BMSCs from AIS-related osteopenia patients have lower autophagic activity, which may be related to the lower osteogenic capacity and higher adipogenic capacity of BMSCs and consequently lead to the lower bone mass in AIS patients.
Humans
;
Adolescent
;
Scoliosis/genetics*
;
Cell Differentiation/physiology*
;
Osteogenesis/genetics*
;
Bone Diseases, Metabolic/genetics*
;
Kyphosis
;
Autophagy/genetics*
;
Bone Marrow Cells
;
Cells, Cultured
;
Doublecortin-Like Kinases
2.Regulation of non-coding RNA in type H vessels angiogenesis of bone.
Shengping TANG ; Shijie LIAO ; Jianhong LIU ; Xiaolin LUO ; Zhendi WEI ; Xiaofei DING
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(8):1042-1048
OBJECTIVE:
To summarize the regulatory effect of non-coding RNA (ncRNA) on type H vessels angiogenesis of bone.
METHODS:
Recent domestic and foreign related literature about the regulation of ncRNA in type H vessels angiogenesis was widely reviewed and summarized.
RESULTS:
Type H vessels is a special subtype of bone vessels with the ability to couple bone formation. At present, the research on ncRNA regulating type H vessels angiogenesis in bone diseases mainly focuses on microRNA, long ncRNA, and small interfering RNA, which can affect the expressions of hypoxia inducible factor 1α, platelet derived growth factor BB, slit guidance ligand 3, and other factors through their own unique ways of action, thus regulating type H vessels angiogenesis and participating in the occurrence and development of bone diseases.
CONCLUSION
At present, the mechanism of ncRNA regulating bone type H vessels angiogenesis has been preliminarily explored. With the deepening of research, ncRNA is expected to be a new target for the diagnosis and treatment of vascular related bone diseases.
Humans
;
RNA, Untranslated/genetics*
;
RNA, Long Noncoding
;
Bone Diseases/genetics*
;
MicroRNAs/genetics*
;
RNA, Small Interfering
3.Promotion effect of FGF23 on osteopenia in congenital scoliosis through FGFr3/TNAP/OPN pathway.
Hongqi ZHANG ; Gang XIANG ; Jiong LI ; Sihan HE ; Yunjia WANG ; Ang DENG ; Yuxiang WANG ; Chaofeng GUO
Chinese Medical Journal 2023;136(12):1468-1477
BACKGROUND:
Congenital scoliosis (CS) is a complex spinal malformation of unknown etiology with abnormal bone metabolism. Fibroblast growth factor 23 (FGF23), secreted by osteoblasts and osteocytes, can inhibit bone formation and mineralization. This research aims to investigate the relationship between CS and FGF23.
METHODS:
We collected peripheral blood from two pairs of identical twins for methylation sequencing of the target region. FGF23 mRNA levels in the peripheral blood of CS patients and age-matched controls were measured. Receiver operator characteristic (ROC) curve analyses were conducted to evaluate the specificity and sensitivity of FGF23. The expression levels of FGF23 and its downstream factors fibroblast growth factor receptor 3 (FGFr3)/tissue non-specific alkaline phosphatase (TNAP)/osteopontin (OPN) in primary osteoblasts from CS patients (CS-Ob) and controls (CT-Ob) were detected. In addition, the osteogenic abilities of FGF23-knockdown or FGF23-overexpressing Ob were examined.
RESULTS:
DNA methylation of the FGF23 gene in CS patients was decreased compared to that of their identical twins, accompanied by increased mRNA levels. CS patients had increased peripheral blood FGF23 mRNA levels and decreased computed tomography (CT) values compared with controls. The FGF23 mRNA levels were negatively correlated with the CT value of the spine, and ROCs of FGF23 mRNA levels showed high sensitivity and specificity for CS. Additionally, significantly increased levels of FGF23, FGFr3, OPN, impaired osteogenic mineralization and lower TNAP levels were observed in CS-Ob. Moreover, FGF23 overexpression in CT-Ob increased FGFr3 and OPN levels and decreased TNAP levels, while FGF23 knockdown induced downregulation of FGFr3 and OPN but upregulation of TNAP in CS-Ob. Mineralization of CS-Ob was rescued after FGF23 knockdown.
CONCLUSIONS
Our results suggested increased peripheral blood FGF23 levels, decreased bone mineral density in CS patients, and a good predictive ability of CS by peripheral blood FGF23 levels. FGF23 may contribute to osteopenia in CS patients through FGFr3/TNAP / OPN pathway.
Humans
;
Osteopontin/genetics*
;
Alkaline Phosphatase/metabolism*
;
Receptor, Fibroblast Growth Factor, Type 3/metabolism*
;
Scoliosis/genetics*
;
Osteoblasts/metabolism*
;
Calcinosis
;
RNA, Messenger/metabolism*
;
Bone Diseases, Metabolic/metabolism*
;
Fibroblast Growth Factors/genetics*
4.Clinical and genetic analysis of three children with KBG syndrome due to novel variants of ANKRD11 gene.
Li WANG ; Jingjing LI ; Jinghan XU ; Yanlei XU ; Junbo WANG ; Yin FENG ; Xiangdong KONG
Chinese Journal of Medical Genetics 2023;40(1):1-6
OBJECTIVE:
To explore the clinical and genetic characteristics of three children with KBG syndrome.
METHODS:
Clinical data of the three children from two families who have presented at the First Affiliated Hospital of Zhengzhou University between October 2019 and September 2020 and their family members were collected. Trio-whole exome sequencing (trio-WES) and Sanger sequencing were carried out.
RESULTS:
All children had feeding difficulties, congenital heart defects and facial dysmorphism. The sib- pair from family 1 was found to harbor a novel de novo heterozygous c.6270delT (p.Q2091Rfs*84) variant of the ANKRD11 gene, whilst the child from family 2 was found to harbor a novel heterozygous c.6858delC (p.D2286Efs*51) variant of the ANKRD11 gene, which was inherited from his mother who had a mild clinical phenotype.
CONCLUSION
The heterozygous frameshift variants of the ANKRD11 gene probably underlay the disease in the three children. Above findings have enriched the spectrum of the ANKRD11 gene variants.
Female
;
Child
;
Humans
;
Abnormalities, Multiple/genetics*
;
Intellectual Disability/genetics*
;
Bone Diseases, Developmental/genetics*
;
Tooth Abnormalities/genetics*
;
Facies
;
Repressor Proteins/genetics*
;
Mothers
;
Mutation
5.Effect of PKM2 on Osteogenic and Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in Myeloma Bone Disease.
Jiang-Hua DING ; Shao-Lin YANG ; Shu-Lang ZHU
Journal of Experimental Hematology 2023;31(1):170-178
OBJECTIVE:
To investigate the expression of pyruvate kinase M2 (PKM2) in bone marrow mesenchymal stem cells (BMSCs) in myeloma bone disease (MBD) and its effect on osteogenic and adipogenic differentiation of BMSCs.
METHODS:
BMSCs were isolated from bone marrow of five patients with multiple myeloma (MM) (MM group) and five with iron deficiency anemia (control group) for culture and identification. The expression of PKM2 protein were compared between the two groups. The differences between osteogenic and adipogenic differentiation of BMSCs were assessed by using alkaline phosphatase (ALP) and oil red O staining, and detecting marker genes of osteogenesis and adipogenesis. The effect of MM cell line (RPMI-8226) and BMSCs co-culture on the expression of PKM2 was explored. Functional analysis was performed to investigate the correlations of PKM2 expression of MM-derived BMSCs with osteogenic and adipogenic differentiation by employing PKM2 activator and inhibitor. The role of orlistat was explored in regulating PKM2 expression, osteogenic and adipogenic differentiation of MM-derived BMSCs.
RESULTS:
Compared with control, MM-originated BMSCs possessed the ability of increased adipogenic and decreased osteogenic differentiation, and higher level of PKM2 protein. Co-culture of MM cells with BMSCs markedly up-regulated the expression of PKM2 of BMSCs. Up-regulation of PKM2 expression could promote adipogenic differentiation and inhibit osteogenic differentiation of MM-derived BMSCs, while down-regulation of PKM2 showed opposite effect. Orlistat significantly promoted osteogenic differentiation in MM-derived BMSCs via inhibiting the expression of PKM2.
CONCLUSION
The overexpression of PKM2 can induce the inhibition of osteogenic differentiation of BMSCs in MBD. Orlistat can promote the osteogenic differentiation of BMSCs via inhibiting the expression of PKM2, indicating a potential novel agent of anti-MBD therapy.
Humans
;
Adipogenesis
;
Bone Diseases/metabolism*
;
Bone Marrow Cells
;
Cell Differentiation
;
Cells, Cultured
;
Mesenchymal Stem Cells/physiology*
;
Multiple Myeloma/metabolism*
;
Orlistat/pharmacology*
;
Osteogenesis/genetics*
6.Clinical and genetic characteristics of 9 rare cases with coexistence of dual genetic diagnoses.
Dan Dan TAN ; Yi Dan LIU ; Yan Bin FAN ; Cui Jie WEI ; Dan Yang SONG ; Hai Po YANG ; Hong PAN ; Wei Li CUI ; Shan Shan MAO ; Xiang Ping XU ; Xiao Li YU ; Bo CUI ; Hui XIONG
Chinese Journal of Pediatrics 2023;61(4):345-350
Objective: To analyze the clinical and genetic characteristics of pediatric patients with dual genetic diagnoses (DGD). Methods: Clinical and genetic data of pediatric patients with DGD from January 2021 to February 2022 in Peking University First Hospital were collected and analyzed retrospectively. Results: Among the 9 children, 6 were boys and 3 were girls. The age of last visit or follow-up was 5.0 (2.7,6.8) years. The main clinical manifestations included motor retardation, mental retardation, multiple malformations, and skeletal deformity. Cases 1-4 were all all boys, showed myopathic gait, poor running and jumping, and significantly increased level of serum creatine kinase. Disease-causing variations in Duchenne muscular dystrophy (DMD) gene were confirmed by genetic testing. The 4 children were diagnosed with DMD or Becker muscular dystrophy combined with a second genetic disease, including hypertrophic osteoarthropathy, spinal muscular atrophy, fragile X syndrome, and cerebral cavernous malformations type 3, respectively. Cases 5-9 were clinically and genetically diagnosed as COL9A1 gene-related multiple epiphyseal dysplasia type 6 combined with NF1 gene-related neurofibromatosis type 1, COL6A3 gene-related Bethlem myopathy with WNT1 gene-related osteogenesis imperfecta type XV, Turner syndrome (45, X0/46, XX chimera) with TH gene-related Segawa syndrome, Chromosome 22q11.2 microduplication syndrome with DYNC1H1 gene-related autosomal dominant lower extremity-predominant spinal muscular atrophy-1, and ANKRD11 gene-related KBG syndrome combined with IRF2BPL gene-related neurodevelopmental disorder with regression, abnormal movement, language loss and epilepsy. DMD was the most common, and there were 6 autosomal dominant diseases caused by de novo heterozygous pathogenic variations. Conclusions: Pediatric patients with coexistence of double genetic diagnoses show complex phenotypes. When the clinical manifestations and progression are not fully consistent with the diagnosed rare genetic disease, a second rare genetic disease should be considered, and autosomal dominant diseases caused by de novo heterozygous pathogenic variation should be paid attention to. Trio-based whole-exome sequencing combining a variety of molecular genetic tests would be helpful for precise diagnosis.
Humans
;
Abnormalities, Multiple
;
Retrospective Studies
;
Intellectual Disability/genetics*
;
Bone Diseases, Developmental/complications*
;
Tooth Abnormalities/complications*
;
Facies
;
Muscular Dystrophy, Duchenne/complications*
;
Muscular Atrophy, Spinal/complications*
;
Carrier Proteins
;
Nuclear Proteins
7.Tandem mass spectrometry and genetic variant analysis of four neonates with very long chain acyl-coenzyme A dehydrogenase deficiency.
Dongyang HONG ; Yanyun WANG ; Yun SUN ; Dingyuan MA ; Zhilei ZHANG ; Wei CHENG ; Tao JIANG
Chinese Journal of Medical Genetics 2022;39(3):276-281
OBJECTIVE:
To analyze the clinical features and genetic variants in four neonates with very long chain acyl-coenzyme A dehydrogenase (VLCAD) deficiency.
METHODS:
Neonates with a tetradecenoylcarnitine (C14:1) concentration at above 0.4 μmol/L in newborn screening were recalled for re-testing. Four neonates were diagnosed with VLCAD deficiency by MS-MS and genetic testing, and their clinical features and genotypes were analyzed.
RESULTS:
All cases had elevated blood C14:1, and the values of first recalls were all lower than the initial test. In 2 cases, the C14:1 had dropped to the normal range. 1 case has remained at above 1 μmol/L after the reduction, and the remainder one case was slightly decreased. In total eight variants of the ADACVL genes were detected among the four neonates, which included 5 missense variants and 3 novel variants (p.Met344Val, p.Ala416Val, c.1077+6T>A). No neonate showed salient clinical manifestations.
CONCLUSION
Above findings have enriched the spectrum of ADACVL gene mutations and provided a valuable reference for the screening and diagnosis of VLCAD deficiency.
Acyl-CoA Dehydrogenase/genetics*
;
Acyl-CoA Dehydrogenase, Long-Chain
;
Congenital Bone Marrow Failure Syndromes
;
Genetic Testing
;
Humans
;
Infant, Newborn
;
Lipid Metabolism, Inborn Errors
;
Mitochondrial Diseases
;
Muscular Diseases
;
Tandem Mass Spectrometry
8.Analysis of three patients with KBG syndrome and epileptic seizures due to variants of ANKRD11 gene.
Chao LIU ; Xianhui REN ; Luojun WANG ; Zihan WEI ; Mi CAO ; Guoyan LI ; Zhenyu WU ; Yanchun DENG
Chinese Journal of Medical Genetics 2022;39(5):479-483
OBJECTIVE:
To summarize the clinical phenotype and genotypic characteristics of 3 patients with KBG syndrome and epileptic seizure.
METHODS:
Clinical data of the patients were collected. Family-trio whole exon sequencing (WES) was carried out. Candidate variants were verified by Sanger sequencing.
RESULTS:
Patients 1 and 2 were boys, and patient 3 was an adult woman. All patients had epileptic seizures and mental deficiency. Their facial features included triangular face, low hair line, hypertelorism, large forward leaning auricles, broad nasal bridge, upturned nostrils, long philtrum, arched upper lip, and macrodontia. The two boys also had bilateral Simian creases. WES revealed that the three patients all harbored heterozygous de novo frameshift variants in exon 9 of the ANKRD11 gene including c.2948delG (p.Ser983Metfs*335), c.5397_c.5398insC (p.Glu1800Argfs*150) and c.1180_c.1184delAATAA (p.Asn394Hisfs*42). So far 291 patients with ANKRD11 gene variants or 16q24.3 microdeletions were reported, with over 75% being de novo mutations.
CONCLUSION
Above findings have enriched the spectrum of ANKRD11 gene mutations underlying KBG syndrome. WES is helpful for the early diagnosis of KBG, and provided reference for genetic counseling of this disease.
Abnormalities, Multiple/genetics*
;
Bone Diseases, Developmental/genetics*
;
Epilepsy/genetics*
;
Facies
;
Humans
;
Intellectual Disability/genetics*
;
Phenotype
;
Repressor Proteins/genetics*
;
Seizures/genetics*
;
Tooth Abnormalities/genetics*
9.CNV-seq analysis of copy number variations in 217 fetuses with nasal bone dysplasia.
Panlai SHI ; Yaqin HOU ; Duo CHEN ; Ning LIU ; Zhihui JIAO ; Yin FENG ; Gege SUN ; Ruonan ZHU ; Xiangdong KONG
Chinese Journal of Medical Genetics 2022;39(10):1076-1079
OBJECTIVE:
To assess the diagnostic value of copy number variation sequencing (CNV-seq) in the genetic etiology of fetuses with nasal bone dysplasia (NBD).
METHODS:
A total of 217 fetuses discovered with NBD from December 2017 to December 2020 were divided into the isolated NBD group and NBD combined with other anomalies group, for which copy number variations (CNVs) were analyzed.
RESULTS:
A total of 40 fetal abnormalities were detected in 217 cases, with an overall abnormal rate of 18.4%. These included 31 cases with aneuploidies (14.3%, 31/217) and 9 cases with genomic CNVs (4.1%, 9/217). Five cases of trisomy 21 (3.5%, 5/144) and two CNVs cases with unknown clinical significance (1.4%, 2/144) were detected in the isolated group. As for the combined NBD group, 26 aneuploidies (35.6%, 26/73), including 19 cases with trisomy 21, 6 cases with trisomy 18, 1 case with trisomy 13, 5 cases with pathogenic CNVs (6.8%, 5/73), and 2 cases with CNVs of unknown clinical significance (2.7%, 2/73) were detected. A significant difference was detected between the two groups (P < 0.01).
CONCLUSION
The detection rate of CNV-seq is high for chromosomal aneuploidies and pathogenic CNVs in fetuses with NBD, particularly in those combined with other ultrasonic abnormalities.
Aneuploidy
;
Bone Diseases, Developmental
;
Chromosome Aberrations
;
DNA Copy Number Variations
;
Down Syndrome/genetics*
;
Female
;
Fetus/abnormalities*
;
Humans
;
Pregnancy
;
Prenatal Diagnosis
;
Trisomy
10.Targeted inhibition of osteoclastogenesis reveals the pathogenesis and therapeutics of bone loss under sympathetic neurostress.
Bingdong SUI ; Jin LIU ; Chenxi ZHENG ; Lei DANG ; Ji CHEN ; Yuan CAO ; Kaichao ZHANG ; Lu LIU ; Minyan DANG ; Liqiang ZHANG ; Nan CHEN ; Tao HE ; Kun XUAN ; Fang JIN ; Ge ZHANG ; Yan JIN ; Chenghu HU
International Journal of Oral Science 2022;14(1):39-39
Sympathetic cues via the adrenergic signaling critically regulate bone homeostasis and contribute to neurostress-induced bone loss, but the mechanisms and therapeutics remain incompletely elucidated. Here, we reveal an osteoclastogenesis-centered functionally important osteopenic pathogenesis under sympatho-adrenergic activation with characterized microRNA response and efficient therapeutics. We discovered that osteoclastic miR-21 was tightly regulated by sympatho-adrenergic cues downstream the β2-adrenergic receptor (β2AR) signaling, critically modulated osteoclastogenesis in vivo by inhibiting programmed cell death 4 (Pdcd4), and mediated detrimental effects of both isoproterenol (ISO) and chronic variable stress (CVS) on bone. Intriguingly, without affecting osteoblastic bone formation, bone protection against ISO and CVS was sufficiently achieved by a (D-Asp8)-lipid nanoparticle-mediated targeted inhibition of osteoclastic miR-21 or by clinically relevant drugs to suppress osteoclastogenesis. Collectively, these results unravel a previously underdetermined molecular and functional paradigm that osteoclastogenesis crucially contributes to sympatho-adrenergic regulation of bone and establish multiple targeted therapeutic strategies to counteract osteopenias under stresses.
Adrenergic Agents/pharmacology*
;
Apoptosis Regulatory Proteins/pharmacology*
;
Bone Diseases, Metabolic/metabolism*
;
Humans
;
Liposomes
;
MicroRNAs/genetics*
;
Nanoparticles
;
Osteoclasts
;
Osteogenesis/physiology*
;
RNA-Binding Proteins/pharmacology*

Result Analysis
Print
Save
E-mail