1.Feasibility of a Machine Learning Classifier for Predicting Post-Induction Hypotension in Non-Cardiac Surgery
Insun PARK ; Jae Hyon PARK ; Young Hyun KOO ; Chang-Hoon KOO ; Bon-Wook KOO ; Jin-Hee KIM ; Ah-Young OH
Yonsei Medical Journal 2025;66(3):160-171
Purpose:
To develop a machine learning (ML) classifier for predicting post-induction hypotension (PIH) in non-cardiac surgeries.
Materials and Methods:
Preoperative data and early vital signs were obtained from 3669 cases in the VitalDB database, an opensource registry. PIH was defined as sustained mean arterial pressure (MAP) <65 mm Hg within 20 minutes since induction or from induction to incision. Six different ML algorithms were used to create binary classifiers to predict PIH. The primary outcome was the area under the receiver operating characteristic curve (AUROC) of ML classifiers.
Results:
A total of 2321 (63.3%) cases exhibited PIH. Among ML classifiers, the random forest regressor and extremely gradient boosting regressor showed the highest AUROC, both recording a value of 0.772. Excluding these models, the light gradient boosting machine regressor showed the second highest AUROC [0.769; 95% confidence interval (CI), 0.767–0.771], followed by the gradient boosting regressor (0.768; 95% CI, 0.763–0.772), AdaBoost regressor (0.752; 95% CI, 0.743–0.761), and automatic relevance determination regression (0.685; 95% CI, 0.669–0.701). The top three important features were mean diastolic blood pressure (DBP), minimum MAP, and minimum DBP from anesthetic induction to tracheal intubation, and these features were lower in cases with PIH (all p<0.001).
Conclusion
ML classifiers exhibited moderate performance in predicting PIH, and have the potential for real-time prediction.
2.Feasibility of a Machine Learning Classifier for Predicting Post-Induction Hypotension in Non-Cardiac Surgery
Insun PARK ; Jae Hyon PARK ; Young Hyun KOO ; Chang-Hoon KOO ; Bon-Wook KOO ; Jin-Hee KIM ; Ah-Young OH
Yonsei Medical Journal 2025;66(3):160-171
Purpose:
To develop a machine learning (ML) classifier for predicting post-induction hypotension (PIH) in non-cardiac surgeries.
Materials and Methods:
Preoperative data and early vital signs were obtained from 3669 cases in the VitalDB database, an opensource registry. PIH was defined as sustained mean arterial pressure (MAP) <65 mm Hg within 20 minutes since induction or from induction to incision. Six different ML algorithms were used to create binary classifiers to predict PIH. The primary outcome was the area under the receiver operating characteristic curve (AUROC) of ML classifiers.
Results:
A total of 2321 (63.3%) cases exhibited PIH. Among ML classifiers, the random forest regressor and extremely gradient boosting regressor showed the highest AUROC, both recording a value of 0.772. Excluding these models, the light gradient boosting machine regressor showed the second highest AUROC [0.769; 95% confidence interval (CI), 0.767–0.771], followed by the gradient boosting regressor (0.768; 95% CI, 0.763–0.772), AdaBoost regressor (0.752; 95% CI, 0.743–0.761), and automatic relevance determination regression (0.685; 95% CI, 0.669–0.701). The top three important features were mean diastolic blood pressure (DBP), minimum MAP, and minimum DBP from anesthetic induction to tracheal intubation, and these features were lower in cases with PIH (all p<0.001).
Conclusion
ML classifiers exhibited moderate performance in predicting PIH, and have the potential for real-time prediction.
3.Feasibility of a Machine Learning Classifier for Predicting Post-Induction Hypotension in Non-Cardiac Surgery
Insun PARK ; Jae Hyon PARK ; Young Hyun KOO ; Chang-Hoon KOO ; Bon-Wook KOO ; Jin-Hee KIM ; Ah-Young OH
Yonsei Medical Journal 2025;66(3):160-171
Purpose:
To develop a machine learning (ML) classifier for predicting post-induction hypotension (PIH) in non-cardiac surgeries.
Materials and Methods:
Preoperative data and early vital signs were obtained from 3669 cases in the VitalDB database, an opensource registry. PIH was defined as sustained mean arterial pressure (MAP) <65 mm Hg within 20 minutes since induction or from induction to incision. Six different ML algorithms were used to create binary classifiers to predict PIH. The primary outcome was the area under the receiver operating characteristic curve (AUROC) of ML classifiers.
Results:
A total of 2321 (63.3%) cases exhibited PIH. Among ML classifiers, the random forest regressor and extremely gradient boosting regressor showed the highest AUROC, both recording a value of 0.772. Excluding these models, the light gradient boosting machine regressor showed the second highest AUROC [0.769; 95% confidence interval (CI), 0.767–0.771], followed by the gradient boosting regressor (0.768; 95% CI, 0.763–0.772), AdaBoost regressor (0.752; 95% CI, 0.743–0.761), and automatic relevance determination regression (0.685; 95% CI, 0.669–0.701). The top three important features were mean diastolic blood pressure (DBP), minimum MAP, and minimum DBP from anesthetic induction to tracheal intubation, and these features were lower in cases with PIH (all p<0.001).
Conclusion
ML classifiers exhibited moderate performance in predicting PIH, and have the potential for real-time prediction.
4.Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology
Hye-Geum KIM ; Dai-Seg BAI ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; So Hye JO ; Byoungyoung GU
Journal of Korean Medical Science 2025;40(9):e20-
Background:
Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment, its standalone efficacy is debated. This study examined the effectiveness of the MMSE alone versus in combination with other cognitive assessments in predicting dementia diagnosis, with the aim of refining the diagnostic accuracy for dementia.
Methods:
A total of 2,863 participants with subjective cognitive complaints who underwent comprehensive neuropsychological assessments were included. We developed two random forest models: one using only the MMSE and another incorporating additional cognitive tests.These models were evaluated based on their accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) on a 70:30 training-to-testing split.
Results:
The MMSE-alone model predicted dementia with an accuracy of 86% and AUC of 0.872. The expanded model demonstrated increased accuracy (88%) and an AUC of 0.934.Notably, 17.46% of the cases were reclassified from dementia to non-dementia category upon including additional tests. Higher educational level and younger age were associated with these shifts.
Conclusion
The findings suggest that although the MMSE is a valuable screening tool, it should not be used in isolation to determine dementia severity. The addition of diverse cognitive assessments can significantly enhance diagnostic precision, particularly in younger and more educated populations. Future diagnostic protocols should integrate multifaceted cognitive evaluations to reflect the complexity of dementia accurately.
5.Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology
Hye-Geum KIM ; Dai-Seg BAI ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; So Hye JO ; Byoungyoung GU
Journal of Korean Medical Science 2025;40(9):e20-
Background:
Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment, its standalone efficacy is debated. This study examined the effectiveness of the MMSE alone versus in combination with other cognitive assessments in predicting dementia diagnosis, with the aim of refining the diagnostic accuracy for dementia.
Methods:
A total of 2,863 participants with subjective cognitive complaints who underwent comprehensive neuropsychological assessments were included. We developed two random forest models: one using only the MMSE and another incorporating additional cognitive tests.These models were evaluated based on their accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) on a 70:30 training-to-testing split.
Results:
The MMSE-alone model predicted dementia with an accuracy of 86% and AUC of 0.872. The expanded model demonstrated increased accuracy (88%) and an AUC of 0.934.Notably, 17.46% of the cases were reclassified from dementia to non-dementia category upon including additional tests. Higher educational level and younger age were associated with these shifts.
Conclusion
The findings suggest that although the MMSE is a valuable screening tool, it should not be used in isolation to determine dementia severity. The addition of diverse cognitive assessments can significantly enhance diagnostic precision, particularly in younger and more educated populations. Future diagnostic protocols should integrate multifaceted cognitive evaluations to reflect the complexity of dementia accurately.
6.Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology
Hye-Geum KIM ; Dai-Seg BAI ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; So Hye JO ; Byoungyoung GU
Journal of Korean Medical Science 2025;40(9):e20-
Background:
Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment, its standalone efficacy is debated. This study examined the effectiveness of the MMSE alone versus in combination with other cognitive assessments in predicting dementia diagnosis, with the aim of refining the diagnostic accuracy for dementia.
Methods:
A total of 2,863 participants with subjective cognitive complaints who underwent comprehensive neuropsychological assessments were included. We developed two random forest models: one using only the MMSE and another incorporating additional cognitive tests.These models were evaluated based on their accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) on a 70:30 training-to-testing split.
Results:
The MMSE-alone model predicted dementia with an accuracy of 86% and AUC of 0.872. The expanded model demonstrated increased accuracy (88%) and an AUC of 0.934.Notably, 17.46% of the cases were reclassified from dementia to non-dementia category upon including additional tests. Higher educational level and younger age were associated with these shifts.
Conclusion
The findings suggest that although the MMSE is a valuable screening tool, it should not be used in isolation to determine dementia severity. The addition of diverse cognitive assessments can significantly enhance diagnostic precision, particularly in younger and more educated populations. Future diagnostic protocols should integrate multifaceted cognitive evaluations to reflect the complexity of dementia accurately.
7.Feasibility of a Machine Learning Classifier for Predicting Post-Induction Hypotension in Non-Cardiac Surgery
Insun PARK ; Jae Hyon PARK ; Young Hyun KOO ; Chang-Hoon KOO ; Bon-Wook KOO ; Jin-Hee KIM ; Ah-Young OH
Yonsei Medical Journal 2025;66(3):160-171
Purpose:
To develop a machine learning (ML) classifier for predicting post-induction hypotension (PIH) in non-cardiac surgeries.
Materials and Methods:
Preoperative data and early vital signs were obtained from 3669 cases in the VitalDB database, an opensource registry. PIH was defined as sustained mean arterial pressure (MAP) <65 mm Hg within 20 minutes since induction or from induction to incision. Six different ML algorithms were used to create binary classifiers to predict PIH. The primary outcome was the area under the receiver operating characteristic curve (AUROC) of ML classifiers.
Results:
A total of 2321 (63.3%) cases exhibited PIH. Among ML classifiers, the random forest regressor and extremely gradient boosting regressor showed the highest AUROC, both recording a value of 0.772. Excluding these models, the light gradient boosting machine regressor showed the second highest AUROC [0.769; 95% confidence interval (CI), 0.767–0.771], followed by the gradient boosting regressor (0.768; 95% CI, 0.763–0.772), AdaBoost regressor (0.752; 95% CI, 0.743–0.761), and automatic relevance determination regression (0.685; 95% CI, 0.669–0.701). The top three important features were mean diastolic blood pressure (DBP), minimum MAP, and minimum DBP from anesthetic induction to tracheal intubation, and these features were lower in cases with PIH (all p<0.001).
Conclusion
ML classifiers exhibited moderate performance in predicting PIH, and have the potential for real-time prediction.
8.Dementia Overdiagnosis in Younger, Higher Educated Individuals Based on MMSE Alone: Analysis Using Deep Learning Technology
Hye-Geum KIM ; Dai-Seg BAI ; Bon-Hoon KOO ; Eun-Jin CHEON ; Seokho YUN ; So Hye JO ; Byoungyoung GU
Journal of Korean Medical Science 2025;40(9):e20-
Background:
Dementia is a multifaceted disorder that affects cognitive function, necessitating accurate diagnosis for effective management and treatment. Although the Mini-Mental State Examination (MMSE) is widely used to assess cognitive impairment, its standalone efficacy is debated. This study examined the effectiveness of the MMSE alone versus in combination with other cognitive assessments in predicting dementia diagnosis, with the aim of refining the diagnostic accuracy for dementia.
Methods:
A total of 2,863 participants with subjective cognitive complaints who underwent comprehensive neuropsychological assessments were included. We developed two random forest models: one using only the MMSE and another incorporating additional cognitive tests.These models were evaluated based on their accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) on a 70:30 training-to-testing split.
Results:
The MMSE-alone model predicted dementia with an accuracy of 86% and AUC of 0.872. The expanded model demonstrated increased accuracy (88%) and an AUC of 0.934.Notably, 17.46% of the cases were reclassified from dementia to non-dementia category upon including additional tests. Higher educational level and younger age were associated with these shifts.
Conclusion
The findings suggest that although the MMSE is a valuable screening tool, it should not be used in isolation to determine dementia severity. The addition of diverse cognitive assessments can significantly enhance diagnostic precision, particularly in younger and more educated populations. Future diagnostic protocols should integrate multifaceted cognitive evaluations to reflect the complexity of dementia accurately.
9.Feasibility of a Machine Learning Classifier for Predicting Post-Induction Hypotension in Non-Cardiac Surgery
Insun PARK ; Jae Hyon PARK ; Young Hyun KOO ; Chang-Hoon KOO ; Bon-Wook KOO ; Jin-Hee KIM ; Ah-Young OH
Yonsei Medical Journal 2025;66(3):160-171
Purpose:
To develop a machine learning (ML) classifier for predicting post-induction hypotension (PIH) in non-cardiac surgeries.
Materials and Methods:
Preoperative data and early vital signs were obtained from 3669 cases in the VitalDB database, an opensource registry. PIH was defined as sustained mean arterial pressure (MAP) <65 mm Hg within 20 minutes since induction or from induction to incision. Six different ML algorithms were used to create binary classifiers to predict PIH. The primary outcome was the area under the receiver operating characteristic curve (AUROC) of ML classifiers.
Results:
A total of 2321 (63.3%) cases exhibited PIH. Among ML classifiers, the random forest regressor and extremely gradient boosting regressor showed the highest AUROC, both recording a value of 0.772. Excluding these models, the light gradient boosting machine regressor showed the second highest AUROC [0.769; 95% confidence interval (CI), 0.767–0.771], followed by the gradient boosting regressor (0.768; 95% CI, 0.763–0.772), AdaBoost regressor (0.752; 95% CI, 0.743–0.761), and automatic relevance determination regression (0.685; 95% CI, 0.669–0.701). The top three important features were mean diastolic blood pressure (DBP), minimum MAP, and minimum DBP from anesthetic induction to tracheal intubation, and these features were lower in cases with PIH (all p<0.001).
Conclusion
ML classifiers exhibited moderate performance in predicting PIH, and have the potential for real-time prediction.
10.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part III. Management of Advanced Differentiated Thyroid Cancers - Chapter 1-2. Locally Recurred/Persistent Thyroid Cancer Management Strategies 2024
Ho-Ryun WON ; Min Kyoung LEE ; Ho-Cheol KANG ; Bon Seok KOO ; Hyungju KWON ; Sun Wook KIM ; Won Woong KIM ; Jung-Han KIM ; Young Joo PARK ; Jun-Ook PARK ; Young Shin SONG ; Seung Hoon WOO ; Chang Hwan RYU ; Eun Kyung LEE ; Joon-Hyop LEE ; Ji Ye LEE ; Cho Rok LEE ; Dong-Jun LIM ; Jae-Yol LIM ; Yun Jae CHUNG ; Kyorim BACK ; Dong Gyu NA ;
International Journal of Thyroidology 2024;17(1):147-152
These guidelines aim to establish the standard practice for diagnosing and treating patients with differentiated thyroid cancer (DTC). Based on the Korean Thyroid Association (KTA) Guidelines on DTC management, the “Treatment of Advanced DTC” section was revised in 2024 and has been provided through this chapter. Especially, this chapter covers surgical and nonsurgical treatments for the local (previous surgery site) or regional (cervical lymph node metastasis) recurrences. After drafting the guidelines, it was finalized by collecting opinions from KTA members and related societies. Surgical resection is the preferred treatment for local or regional recurrence of advanced DTC. If surgical resection is not possible, nonsurgical resection treatment under ultrasonography guidance may be considered as an alternative treatment for local or regional recurrence of DTC. Furthermore, if residual lesions are suspected even after surgical resection or respiratory-digestive organ invasion, additional radioactive iodine and external radiation treatments are considered.

Result Analysis
Print
Save
E-mail