1.No difference in inflammatory mediator expression between mast cell-rich and mast cell-poor rosacea lesions in Korean patients: a comparative study
Jin Ju LEE ; Bo Ram KWON ; Min Young LEE ; Ji Yeon BYUN ; Joo Young ROH ; Hae Young CHOI ; You Won CHOI
The Ewha Medical Journal 2025;48(1):e78-
2.Effects of Pressure Hemostasis Band Application on Bleeding, Pain, and Discomfort after Bone Marrow Examination
Jin Hee JUNG ; Bo-Eun KIM ; Ji Sook JU ; Mi RYU ; So Young CHOE ; Jong Hee CHOI ; Soo-Mee BANG ; Jeong-Ok LEE ; Ji Yun LEE ; Sang-A KIM
Asian Oncology Nursing 2025;25(1):17-27
Purpose:
The purpose of this study was to develop an approach to alleviate the discomfort caused by sandbag compression after a bone marrow examination. This research examined the effects of applying a pressure hemostasis band on bleeding, pain, and discomfort at the bone marrow examination site.
Methods:
This study was conducted with a nonequivalent control group non-synchronized design. For 74 patients under evaluation who underwent bone marrow examination, sandbag compression was applied to the examination site in the control group (n=37), and a pressure hemostasis band was applied to the intervention group (n=37). In both groups, absolute bed rest was performed for two hours, and bleeding, pain, and discomfort at the examination site were measured.
Results:
After two hours of the bone marrow examination, there was no difference in bleeding on the gauze between the two groups (F=0.59, p=.444). Bleeding occurred in three patients in the intervention group and six in the control group (χ 2 =1.14, p=.479), with no cases of hematoma detected in either group. One hour post-examination, the control group experienced significantly higher pain (F=5.45, p=.022) and discomfort (F=5.68, p=.020) than the intervention group. However, pain and discomfort levels were similar between groups after two hours.
Conclusion
Compared to the sandbag compression group, the band application group showed no difference in bleeding and experienced less pain and discomfort at the examination site. This confirms that the pressure hemostasis band is a suitable alternative to sandbag compression in post-examination care.
3.No difference in inflammatory mediator expression between mast cell-rich and mast cell-poor rosacea lesions in Korean patients: a comparative study
Jin Ju LEE ; Bo Ram KWON ; Min Young LEE ; Ji Yeon BYUN ; Joo Young ROH ; Hae Young CHOI ; You Won CHOI
The Ewha Medical Journal 2025;48(1):e78-
4.No difference in inflammatory mediator expression between mast cell-rich and mast cell-poor rosacea lesions in Korean patients: a comparative study
Jin Ju LEE ; Bo Ram KWON ; Min Young LEE ; Ji Yeon BYUN ; Joo Young ROH ; Hae Young CHOI ; You Won CHOI
The Ewha Medical Journal 2025;48(1):e78-
5.Effects of Pressure Hemostasis Band Application on Bleeding, Pain, and Discomfort after Bone Marrow Examination
Jin Hee JUNG ; Bo-Eun KIM ; Ji Sook JU ; Mi RYU ; So Young CHOE ; Jong Hee CHOI ; Soo-Mee BANG ; Jeong-Ok LEE ; Ji Yun LEE ; Sang-A KIM
Asian Oncology Nursing 2025;25(1):17-27
Purpose:
The purpose of this study was to develop an approach to alleviate the discomfort caused by sandbag compression after a bone marrow examination. This research examined the effects of applying a pressure hemostasis band on bleeding, pain, and discomfort at the bone marrow examination site.
Methods:
This study was conducted with a nonequivalent control group non-synchronized design. For 74 patients under evaluation who underwent bone marrow examination, sandbag compression was applied to the examination site in the control group (n=37), and a pressure hemostasis band was applied to the intervention group (n=37). In both groups, absolute bed rest was performed for two hours, and bleeding, pain, and discomfort at the examination site were measured.
Results:
After two hours of the bone marrow examination, there was no difference in bleeding on the gauze between the two groups (F=0.59, p=.444). Bleeding occurred in three patients in the intervention group and six in the control group (χ 2 =1.14, p=.479), with no cases of hematoma detected in either group. One hour post-examination, the control group experienced significantly higher pain (F=5.45, p=.022) and discomfort (F=5.68, p=.020) than the intervention group. However, pain and discomfort levels were similar between groups after two hours.
Conclusion
Compared to the sandbag compression group, the band application group showed no difference in bleeding and experienced less pain and discomfort at the examination site. This confirms that the pressure hemostasis band is a suitable alternative to sandbag compression in post-examination care.
6.No difference in inflammatory mediator expression between mast cell-rich and mast cell-poor rosacea lesions in Korean patients: a comparative study
Jin Ju LEE ; Bo Ram KWON ; Min Young LEE ; Ji Yeon BYUN ; Joo Young ROH ; Hae Young CHOI ; You Won CHOI
The Ewha Medical Journal 2025;48(1):e78-
7.Effects of Pressure Hemostasis Band Application on Bleeding, Pain, and Discomfort after Bone Marrow Examination
Jin Hee JUNG ; Bo-Eun KIM ; Ji Sook JU ; Mi RYU ; So Young CHOE ; Jong Hee CHOI ; Soo-Mee BANG ; Jeong-Ok LEE ; Ji Yun LEE ; Sang-A KIM
Asian Oncology Nursing 2025;25(1):17-27
Purpose:
The purpose of this study was to develop an approach to alleviate the discomfort caused by sandbag compression after a bone marrow examination. This research examined the effects of applying a pressure hemostasis band on bleeding, pain, and discomfort at the bone marrow examination site.
Methods:
This study was conducted with a nonequivalent control group non-synchronized design. For 74 patients under evaluation who underwent bone marrow examination, sandbag compression was applied to the examination site in the control group (n=37), and a pressure hemostasis band was applied to the intervention group (n=37). In both groups, absolute bed rest was performed for two hours, and bleeding, pain, and discomfort at the examination site were measured.
Results:
After two hours of the bone marrow examination, there was no difference in bleeding on the gauze between the two groups (F=0.59, p=.444). Bleeding occurred in three patients in the intervention group and six in the control group (χ 2 =1.14, p=.479), with no cases of hematoma detected in either group. One hour post-examination, the control group experienced significantly higher pain (F=5.45, p=.022) and discomfort (F=5.68, p=.020) than the intervention group. However, pain and discomfort levels were similar between groups after two hours.
Conclusion
Compared to the sandbag compression group, the band application group showed no difference in bleeding and experienced less pain and discomfort at the examination site. This confirms that the pressure hemostasis band is a suitable alternative to sandbag compression in post-examination care.
8.No difference in inflammatory mediator expression between mast cell-rich and mast cell-poor rosacea lesions in Korean patients: a comparative study
Jin Ju LEE ; Bo Ram KWON ; Min Young LEE ; Ji Yeon BYUN ; Joo Young ROH ; Hae Young CHOI ; You Won CHOI
The Ewha Medical Journal 2025;48(1):e78-
9.Development of colonic stent simulator using three-dimensional printing technique: a simulator development study in Korea
Hyundam GU ; Suyoung LEE ; Sol KIM ; Hye-Lim JANG ; Da-Woon CHOI ; Kyu Seok KIM ; Yu Ri SHIN ; Dae Young CHEUNG ; Bo-In LEE ; Jin Il KIM ; Han Hee LEE
Clinical Endoscopy 2024;57(6):790-797
Background/Aims:
Colonic stenting plays a vital role in the management of acute malignant colonic obstruction. The increasing use of self-expandable metal stents (SEMS) and the diverse challenges posed by colonic obstruction at various locations underscore the importance of effective training for colonic stent placement.
Methods:
All the components of the simulator were manufactured using silicone molding techniques in conjunction with three-dimensional (3D) printing. 3D images sourced from computed tomography scans and colonoscopy images were converted into a stereolithography format. Acrylonitrile butadiene styrene copolymers have been used in fused deposition modeling to produce moldings.
Results:
The simulator replicated the large intestine from the rectum to the cecum, mimicking the texture and shape of the human colon. It enables training for colonoscopy insertion, cecum intubation, loop reduction, and stenting within stenotic areas. Interchangeable stenotic modules for four sites (rectum, sigmoid colon, descending colon, and ascending colon) were easily assembled for training. These modules integrate tumor contours and blood vessel structures with a translucent center, allowing real-time visualization during stenting. Successful and repeatable demonstrations of stent insertion and expansion using the reusable SEMS were consistently achieved.
Conclusions
This innovative simulator offers a secure colonic stenting practice across various locations, potentially enhancing clinical outcomes by improving operator proficiency during actual procedures.
10.Development of colonic stent simulator using three-dimensional printing technique: a simulator development study in Korea
Hyundam GU ; Suyoung LEE ; Sol KIM ; Hye-Lim JANG ; Da-Woon CHOI ; Kyu Seok KIM ; Yu Ri SHIN ; Dae Young CHEUNG ; Bo-In LEE ; Jin Il KIM ; Han Hee LEE
Clinical Endoscopy 2024;57(6):790-797
Background/Aims:
Colonic stenting plays a vital role in the management of acute malignant colonic obstruction. The increasing use of self-expandable metal stents (SEMS) and the diverse challenges posed by colonic obstruction at various locations underscore the importance of effective training for colonic stent placement.
Methods:
All the components of the simulator were manufactured using silicone molding techniques in conjunction with three-dimensional (3D) printing. 3D images sourced from computed tomography scans and colonoscopy images were converted into a stereolithography format. Acrylonitrile butadiene styrene copolymers have been used in fused deposition modeling to produce moldings.
Results:
The simulator replicated the large intestine from the rectum to the cecum, mimicking the texture and shape of the human colon. It enables training for colonoscopy insertion, cecum intubation, loop reduction, and stenting within stenotic areas. Interchangeable stenotic modules for four sites (rectum, sigmoid colon, descending colon, and ascending colon) were easily assembled for training. These modules integrate tumor contours and blood vessel structures with a translucent center, allowing real-time visualization during stenting. Successful and repeatable demonstrations of stent insertion and expansion using the reusable SEMS were consistently achieved.
Conclusions
This innovative simulator offers a secure colonic stenting practice across various locations, potentially enhancing clinical outcomes by improving operator proficiency during actual procedures.

Result Analysis
Print
Save
E-mail