1.Pathogenic characteristics and drug sensitivity analysis of hospital-acquired infections in lung transplant recipients: a single-center 5-year retrospective study
Sangsang QIU ; Qinfen XU ; Bo WU ; Xiaojun CAI ; Qinhong HUANG ; Dapeng WANG ; Chunxiao HU ; Jingyu CHEN
Organ Transplantation 2025;16(1):114-121
Objective To analyze the characteristics of postoperative hospital-acquired infections and drug sensitivity in lung transplant recipients over the past 5 years in a single center. Methods A total of 724 lung transplant recipients at Wuxi People's Hospital from January 2019 to December 2023 were selected. Based on the principles of hospital-acquired infection diagnosis, a retrospective analysis was conducted on the hospital infection situation and infection sites of lung transplant recipients, and an analysis of the distribution of hospital-acquired infection pathogens and their antimicrobial susceptibility test status was performed. Results Among the 724 lung transplant recipients, 275 cases of hospital-acquired infection occurred, with an infection rate of 38.0%. The case-time infection rate decreased from 54.2% in 2019 to 22.8% in 2023, showing a downward trend year by year (Z=30.98, P<0.001). The main infection site was the lower respiratory tract, accounting for 73.6%. The pathogens were mainly Gram-negative bacteria, with the top four being Acinetobacter baumannii (37.1%), Pseudomonas aeruginosa (17.3%), Klebsiella pneumoniae (13.7%), and Stenotrophomonas maltophilia (13.4%), with imipenem resistance rates of 89%, 53%, 58% and 100%, respectively. Gram-positive bacteria were mainly Staphylococcus aureus (3.6%), with a methicillin resistance rate of 67%. Conclusions Over the past 5 years, the hospital-acquired infections in lung transplant recipients have shown a downward trend, mainly involving lower respiratory tract infections, with the main pathogens being Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae, all of which have high resistance rates to imipenem.
2.Relationship Between Severe Pneumonia and Signaling Pathways and Regulation by Chinese Medicine: A Review
Cheng LUO ; Bo NING ; Xinyue ZHANG ; Yuzhi HUO ; Xinhui WU ; Yuanhang YE ; Fei WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):294-302
Severe pneumonia is one of the most common and critical respiratory diseases in clinical practice. It is characterized by rapid progression, difficult treatment, high mortality, and many complications, posing a significant threat to the life and health of patients. The pathogenesis of severe pneumonia is highly complex, and studies have shown that its occurrence and development are closely related to multiple signaling pathways. Currently, the treatment of severe pneumonia mainly focuses on anti-infection, mechanical ventilation, and glucocorticoids, but clinical outcomes are often not ideal. Therefore, finding safe and effective alternative therapies is particularly important. In recent years, with the deepening of research into traditional Chinese medicine (TCM), it has gained widespread attention in the treatment of severe pneumonia. This paper reviewed the relationship between severe pneumonia and relevant signaling pathways in recent years and how TCM regulated these pathways in the treatment of severe pneumonia. It was found that TCM could regulate the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), NOD-like receptor protein 3 (NLRP3), and nuclear factor E2-related factor 2 (Nrf2) signaling pathways, playing a role in reducing the inflammatory response, inhibiting cell apoptosis and pyroptosis, improving oxidative stress, and other effects in the treatment of severe pneumonia. Among these pathways, it was found that all of them regulated inflammation to treat severe pneumonia. Therefore, reducing inflammation is the core mechanism by which Chinese medicine treats severe pneumonia. This review provides direction for the clinical treatment of severe pneumonia and offers a scientific basis for the research and development of new drugs.
3.Comparison of multiple machine learning models for predicting the survival of recipients after lung transplantation
Lingzhi SHI ; Yaling LIU ; Haoji YAN ; Zengwei YU ; Senlin HOU ; Mingzhao LIU ; Hang YANG ; Bo WU ; Dong TIAN ; Jingyu CHEN
Organ Transplantation 2025;16(2):264-271
Objective To compare the performance and efficacy of prognostic models constructed by different machine learning algorithms in predicting the survival period of lung transplantation (LTx) recipients. Methods Data from 483 recipients who underwent LTx were retrospectively collected. All recipients were divided into a training set and a validation set at a ratio of 7:3. The 24 collected variables were screened based on variable importance (VIMP). Prognostic models were constructed using random survival forest (RSF) and extreme gradient boosting tree (XGBoost). The performance of the models was evaluated using the integrated area under the curve (iAUC) and time-dependent area under the curve (tAUC). Results There were no significant statistical differences in the variables between the training set and the validation set. The top 15 variables ranked by VIMP were used for modeling and the length of stay in the intensive care unit (ICU) was determined as the most important factor. Compared with the XGBoost model, the RSF model demonstrated better performance in predicting the survival period of recipients (iAUC 0.773 vs. 0.723). The RSF model also showed better performance in predicting the 6-month survival period (tAUC 6 months 0.884 vs. 0.809, P = 0.009) and 1-year survival period (tAUC 1 year 0.896 vs. 0.825, P = 0.013) of recipients. Based on the prediction cut-off values of the two algorithms, LTx recipients were divided into high-risk and low-risk groups. The survival analysis results of both models showed that the survival rate of recipients in the high-risk group was significantly lower than that in the low-risk group (P<0.001). Conclusions Compared with XGBoost, the machine learning prognostic model developed based on the RSF algorithm may preferably predict the survival period of LTx recipients.
4.Research progress on the microecological strategies of root caries management
WU Lijing ; TAO Yiwei ; ZENG Bo ; CAI Yanling
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(3):244-251
Root caries is a prevalent chronic oral disease with an average global prevalence of 41.5%, characterized by high incidence, low rate of treatment, and high rate of retreatment. Root caries is primarily caused by core microbiome-induced dysbiosis and has multiple risk factors, including gingival recession, root surface exposure, and salivary dysfunction. The traditional preventive measures and treatments such as fluoride, mineralizing agents, and restorative materials, are unable to restore or maintain oral microecological homeostasis. Recent studies have demonstrated that probiotics, prebiotics, synbiotics, and antimicrobial peptides may prevent and treat root caries by reversing dysbiosis. In addition, these biotherapeutics can reduce acid production by acidiferous bacteria, promote alkali production (hydrogen peroxide and ammonia) by alkali-producing bacteria, inhibit biofilm formation, decrease extracellular polysaccharide production, and suppress microbial adhesion and aggregation. It is expected to play an important role in the prevention and control of root caries. This article aims to review oral probiotics (Streptococcus oligofermentans, Streptococcus oralis subsp. dentisani, and Streptococcus salivarius), prebiotics (arginine, nitrates, and synthetic compounds), synbiotics, and antimicrobial peptides (gallic acid-polyphemusin I and LH12) to provide evidence and guidance for root caries management through microecological modulation.
5.Research progress of antifungal drugs from natural sources
Shao-jie CHU ; Yan ZHENG ; Shuang-shuang SU ; Xue-song WU ; Hong YAN ; Shao-xin CHEN ; Hong-bo WANG
Acta Pharmaceutica Sinica 2025;60(1):48-57
As the number of patients with compromised immune function increases and fungal resistance develops, so does the risk of contracting deadly fungi in humans. Both fungi and humans are eukaryotes, so identifying unique targets for antifungal drug development is difficult. In addition, the existing antifungal drugs are limited by toxicity, drug interaction and drug resistance in practical application, which leads to the increasing incidence and fatal rate of fungal infections. Therefore, it is urgent to develop new antifungal drugs. The semi-synthetic technology using microbial fermentation products from natural sources as lead compounds has become the most used method in structural modification of antifungal drugs due to its advantages of few reaction steps and easy operation. This paper will introduce the current status of natural antifungal drugs in clinical use, as well as the latest progress in the research and development of new semi-synthetic antifungal drugs, and summarize their mechanism of action, structural modifications, advantages and disadvantages, so as to provide reference for the subsequent development of new antifungal drugs.
6.Effect of the nitroglycerin-controlled low central venous pressure technique on cerebral metabolic markers and cerebral blood oxygen saturation in patients undergoing laparoscopic hepatectomy for liver cancer
Bo WANG ; Xia FU ; Conghai LYU ; Chunfang YIN ; Qiyuan WU
Journal of Clinical Hepatology 2025;41(3):478-484
ObjectiveTo investigate the effect of the nitroglycerin-controlled low central venous pressure (CLCVP) technique on brain metabolic markers and cerebral blood oxygen saturation in patients undergoing laparoscopic hepatectomy for liver cancer, and to reduce the risk of neurological complications. MethodsA total of 105 patients who underwent elective laparoscopic hepatectomy for liver cancer in Haikou Hospital Affiliated to Xiangya Hospital of Central South University from April 2020 to May 2023 were enrolled and randomly divided into CLCVP group with 54 patients and non-CLCVP group with 51 patients. The patients in the CLCVP group were treated with the nitroglycerin CLCVP technique during surgery, while those in the non-CLCVP group were given conventional surgical treatment. The two groups were compared in terms of the following indicators: perioperative indicators; hemodynamic parameters and cerebral oxygen metabolism before anesthesia induction (T0), at 5 minutes after anesthesia induction (T1), at 5 minutes after the beginning of liver parenchyma dissection (T2), at 5 minutes after the end of hepatectomy (T3), and immediately after the end of surgery (T4); the changes in liver function parameters after surgery; the incidence rate of adverse reactions. The independent-samples t test was used for comparison of continuous data between two groups, and the chi-square test was used for comparison of categorical data between two groups; the analysis of variance with repeated measures was used for comparison between multiple time points. ResultsCompared with the non-CLCVP group, the CLCVP group had significantly lower intraoperative blood loss and intraoperative fluid infusion volume (t=5.408 and 7.220, both P<0.05), while there were no significant differences between the two groups in time of operation, anesthesia time, extubation time, resuscitation time and intraoperative urine volume (all P>0.05). Compared with the data at T0, both groups had significant reductions in mean arterial pressure, heart rate, and central venous pressure during surgery (all P<0.05), and compared with the non-CLCVP group, the CLCVP group had significantly lower mean arterial pressure and central venous pressure (P<0.05) and a significantly higher heart rate (P<0.05) at T2 and T3. Compared with the data at T0, both groups had a significant reduction in Ca-jvDO2 at T2 — T4 time points (all P<0.05), while there was no significant difference in Ca-jvDO2 between the two groups at each time point (all P>0.05). Compared with the data at T0, the CLCVP group had a significant reduction in rSO2 at T2 — T4 time points (all P<0.05), and the CLCVP group had a significantly lower level of rSO2 than the non-CLCVP group at T2 — T3 time points (both P<0.05); there were no significant changes in CERO2 and Djv-aBL in either group at each time point (all P>0.05). At 3 and 7 days after surgery, both groups had significant increases in the liver function parameters of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin (TBil) (all P<0.05), and the CLCVP group had significantly lower levels of AST and ALT than the non-CLCVP group (all P<0.05); there was no significant difference in TBil between the two groups at each time point (all P>0.05). There was no significant difference in the incidence rate of perioperative complications between the two groups (χ2=0.729, P=0.394). ConclusionThe application of the nitroglycerin CLCVP technique in laparoscopic hepatectomy for liver cancer can reduce the amount of intraoperative blood loss in patients, but it is necessary to further enhance the monitoring of cerebral blood oxygen saturation during surgery, so as to reduce the risk of neurological complications as much as possible.
7.Research Progress on the Mechanism of Lipocalin-2 in Neurological Diseases
Yongtai ZHOU ; Zhenyu YANG ; Yan LI ; Jiajing WU ; Bo ZHAO
Medical Journal of Peking Union Medical College Hospital 2025;16(2):330-337
Lipocalin-2 (LCN2), a member of the human lipocalin family, has been demonstrated to be closely associated with diabetes, cardiovascular diseases, and renal disorders. Recent studies have indicated that LCN2 plays a significant regulatory role in the pathogenesis and progression of various neurological diseases by mediating pathways such as inflammation, oxidative stress, and ferroptosis. This article reviews the research advancements on the mechanism of LCN2 in neurological disorders, including cerebrovascular diseases, cognitive impairment disorders, Parkinson's disease, depression, and anxiety disorders, aiming to enhance clinical understanding.
8.Alleviation of Ulcerative Colitis by Shaoyaotang via Inhibiting Glycolysis Through SIRT6/HIF-1α Pathway
Yiling XIA ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Erle LIU ; Yiwen WANG ; Shaijin JIANG ; Yiqian YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):10-19
ObjectiveTo investigate the role of silent information regulatory protein (SIRT6)/hypoxia-inducible factor-1α (HIF-1α) pathway in regulating the reprogramming of glucose metabolism in ulcerative colitis (UC) and the mechanism of intervention of Shaoyaotang. MethodsForty-eight c57bL/6 mice were randomly divided into a blank group, a model group, a Mesalazine group (0.42 g·kg-1), a Shaoyaotang group (31.08 g·kg-1), an inhibitor group (OSS-128167, 50 mg·kg-1), and an inhibitor + Shaoyaotang group (50 mg·kg-1 OSS-128167 + 31.08 g·kg-1 Shaoyaotang). A UC model was established by the administration of 2.5% dextran sulfate sodium (DSS) solution for mice in other groups for 7 d, except for the blank group. The mice in each group were treated with saline, Mesalazine, Shaoyaotang, inhibitor, and inhibitor + Shaoyaotang, respectively, for 7 d. The mice were necropsied 24 h after the last administration of the drug. The blood was collected from the orbital region, and colon tissue was taken. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in colon tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect serum interleukin (IL)-10, IL-17, and IL-6 levels. A biochemical method was used to detect glucose and lactate dehydrogenase A (LDHA) levels. Immunohistochemistry (IHC) was employed to detect IL-22 and transforming growth factor-β1 (TGF-β1) levels in colon tissue, and Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were used to detect relative protein and mRNA expressions of SIRT6, HIF-1α, and LDHA. ResultsCompared with those of the blank group, disease activity index (DAI) scores of mice in the model group and inhibitor group were significantly increased (P<0.01). The length of colon tissue was significantly shortened, and colon tissue was congested and eroded. The pathohistological scores were significantly increased (P<0.01). The levels of serum inflammatory factors IL-17 and IL-6 were significantly elevated, and the levels of IL-10 were significantly decreased (P<0.01). The protein expressions of IL-22 and TGF-β1 were significantly reduced in colon tissue (P<0.01). The relative protein and mRNA expressions of SIRT6 were significantly decreased (P<0.01), and the relative protein and mRNA expressions of HIF-1α and LDHA and the contents of glucose and lactate were significantly elevated (P<0.01). The level of inflammation in the colon of the mice in the inhibitor group was more severe than that in the model group (P<0.01). Compared with the model group, the Mesalazine group, the Shaoyaotang group, and the inhibitor + Shaoyaotang group showed reduced colonic injury, significant decrease in serum IL-17 and IL-6, significant increase in IL-10 (P<0.01), significant increase in the protein expressions of IL-22 and TGF-β1 in colon tissue (P<0.01), significant increase in the protein expressions of SIRT6 and the relative mRNA expressions (P<0.01), and significant reduction in the protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate (P<0.01). Compared with those in the Shaoyaotang group, the serum IL-17 and IL-6 were significantly increased, and IL-10 was significantly decreased in the inhibitor + Shaoyaotang group (P<0.01). The protein expressions of IL-22 and TGF-β1 in colon tissue were significantly decreased (P<0.01). The expressions of SIRT6 protein and the relative mRNA expressions were significantly decreased (P<0.01). The protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate were significantly elevated (P<0.01). However, the difference between the Shaoyaotang group and the Mesalazine group was not significant. ConclusionShaoyaotang can effectively treat DSS-induced mice with UC through the SIRT6/HIF-1α pathway, and its mechanism of action may be related to the regulation of the SIRT6/HIF-1α pathway and glucose metabolism reprogramming and the inhibition of glycolysis.
9.Alleviation of Ulcerative Colitis by Shaoyaotang via Inhibiting Glycolysis Through SIRT6/HIF-1α Pathway
Yiling XIA ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Erle LIU ; Yiwen WANG ; Shaijin JIANG ; Yiqian YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):10-19
ObjectiveTo investigate the role of silent information regulatory protein (SIRT6)/hypoxia-inducible factor-1α (HIF-1α) pathway in regulating the reprogramming of glucose metabolism in ulcerative colitis (UC) and the mechanism of intervention of Shaoyaotang. MethodsForty-eight c57bL/6 mice were randomly divided into a blank group, a model group, a Mesalazine group (0.42 g·kg-1), a Shaoyaotang group (31.08 g·kg-1), an inhibitor group (OSS-128167, 50 mg·kg-1), and an inhibitor + Shaoyaotang group (50 mg·kg-1 OSS-128167 + 31.08 g·kg-1 Shaoyaotang). A UC model was established by the administration of 2.5% dextran sulfate sodium (DSS) solution for mice in other groups for 7 d, except for the blank group. The mice in each group were treated with saline, Mesalazine, Shaoyaotang, inhibitor, and inhibitor + Shaoyaotang, respectively, for 7 d. The mice were necropsied 24 h after the last administration of the drug. The blood was collected from the orbital region, and colon tissue was taken. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in colon tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect serum interleukin (IL)-10, IL-17, and IL-6 levels. A biochemical method was used to detect glucose and lactate dehydrogenase A (LDHA) levels. Immunohistochemistry (IHC) was employed to detect IL-22 and transforming growth factor-β1 (TGF-β1) levels in colon tissue, and Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were used to detect relative protein and mRNA expressions of SIRT6, HIF-1α, and LDHA. ResultsCompared with those of the blank group, disease activity index (DAI) scores of mice in the model group and inhibitor group were significantly increased (P<0.01). The length of colon tissue was significantly shortened, and colon tissue was congested and eroded. The pathohistological scores were significantly increased (P<0.01). The levels of serum inflammatory factors IL-17 and IL-6 were significantly elevated, and the levels of IL-10 were significantly decreased (P<0.01). The protein expressions of IL-22 and TGF-β1 were significantly reduced in colon tissue (P<0.01). The relative protein and mRNA expressions of SIRT6 were significantly decreased (P<0.01), and the relative protein and mRNA expressions of HIF-1α and LDHA and the contents of glucose and lactate were significantly elevated (P<0.01). The level of inflammation in the colon of the mice in the inhibitor group was more severe than that in the model group (P<0.01). Compared with the model group, the Mesalazine group, the Shaoyaotang group, and the inhibitor + Shaoyaotang group showed reduced colonic injury, significant decrease in serum IL-17 and IL-6, significant increase in IL-10 (P<0.01), significant increase in the protein expressions of IL-22 and TGF-β1 in colon tissue (P<0.01), significant increase in the protein expressions of SIRT6 and the relative mRNA expressions (P<0.01), and significant reduction in the protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate (P<0.01). Compared with those in the Shaoyaotang group, the serum IL-17 and IL-6 were significantly increased, and IL-10 was significantly decreased in the inhibitor + Shaoyaotang group (P<0.01). The protein expressions of IL-22 and TGF-β1 in colon tissue were significantly decreased (P<0.01). The expressions of SIRT6 protein and the relative mRNA expressions were significantly decreased (P<0.01). The protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate were significantly elevated (P<0.01). However, the difference between the Shaoyaotang group and the Mesalazine group was not significant. ConclusionShaoyaotang can effectively treat DSS-induced mice with UC through the SIRT6/HIF-1α pathway, and its mechanism of action may be related to the regulation of the SIRT6/HIF-1α pathway and glucose metabolism reprogramming and the inhibition of glycolysis.
10.A Case Report of Pachydermoperiostosis by Multidisciplinary Diagnosis and Treatment
Jie ZHANG ; Yan ZHANG ; Li HUO ; Ke LYU ; Tao WANG ; Ze'nan XIA ; Xiao LONG ; Kexin XU ; Nan WU ; Bo YANG ; Weibo XIA ; Rongrong HU ; Limeng CHEN ; Ji LI ; Xia HONG ; Yan ZHANG ; Yagang ZUO
JOURNAL OF RARE DISEASES 2025;4(1):75-82
A 20-year-old male patient presented to the Department of Dermatology of Peking Union Medical College Hospital with complaints of an 8-year history of facial scarring, swelling of the lower limbs, and a 4-year history of scalp thickening. Physical examination showed thickening furrowing wrinkling of the skin on the face and behind the ears, ciliary body hirsutism, blepharoptosis, and cutis verticis gyrate. Both lower limbs were swollen, especially the knees and ankles. The skin of the palms and soles of the feet was keratinized and thickened. Laboratory examination using bone and joint X-ray showed periostosis of the proximal middle phalanges and metacarpals of both hands, distal ulna and radius, tibia and fibula, distal femurs, and metatarsals.Genetic testing revealed two variants in


Result Analysis
Print
Save
E-mail