1.Research progress on the mechanism of traditional Chinese medicine regulating metabolic reprogramming to improve breast cancer
Zhenyu ZHANG ; Weixia CHEN ; Bo FENG ; Jilei LI ; Sizhe WANG ; Meng ZHU ; Chunzheng MA
China Pharmacy 2026;37(2):250-256
Metabolic reprogramming, as one of the core hallmarks of malignant tumors, plays a key role in the occurrence, development and treatment of breast cancer (BC). Abnormal changes in glucose metabolism, amino acid metabolism, lipid metabolism, as well as the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) pathways significantly influence the pathogenesis and progression of BC. Studies have shown that various active components of traditional Chinese medicine (TCM) (such as berberine, matrine, quercetin, curcumin, etc.) and their compound formulations (e.g. Xihuang pill, Danzhi xiaoyao powder, Yanghe decoction, etc.) can inhibit the proliferation and migration of BC cells and induce apoptosis by regulating key metabolic pathways such as glycolysis, lipid synthesis, and amino acid metabolism. TCM demonstrates multi-target and holistic regulatory advantages in intervening in BC metabolic reprogramming, showing significant potential in modulating key molecules like hypoxia inducible factor-1α, hexokinase-2, pyruvate kinase M2, lactate dehydrogenase A, glucose transporter-1, fatty acid synthase, and signaling pathways such as AKT/mTOR. However, current researches still focus predominantly on glucose metabolism, with insufficient mechanistic studies on lipid metabolism, amino acid metabolism, the TCA cycle, and OXPHOS. The precise targets, molecular mechanisms, and clinical translation value of these interventions require further validation and clarification through more high-quality experimental studies and clinical trials.
2.Updates and amendments of the Chinese Pharmacopoeia 2025 Edition (Volume Ⅰ)
LI Hao ; SHEN Mingrui ; ZHANG Pang ; ZHAI Weimin ; NI Long ; HAO Bo ; ZHAO Yuxin ; HE Yi ; MA Shuangcheng ; SHU Rong
Drug Standards of China 2025;26(1):017-022
The Chinese Pharmacopoeia is the legal technical standard which should be followed during the research, production, use, and administration of drugs. At present, the new edition of the Chinese Pharmacopoeia is planned to be promulgated and implemented. This article summarizes and analyzes the main characteristics and the content of updates and amendments of the Chinese Pharmacopoeia 2025 Edition(Volume Ⅰ), to provide a reference for the correct understanding and accurate implementation the new edition of the pharmacopoeia.
3.Changes and Trends in the microbiological-related standards in the Chinese Pharmacopoeia 2025 Edition
FAN Yiling ; ZHU Ran ; YANG Yan ; JIANG Bo ; SONG Minghui ; WANG Jing ; LI Qiongqiong ; LI Gaomin ; WANG Shujuan ; SHAO Hong ; MA Shihong ; CAO Xiaoyun ; HU Changqin ; MA Shuangcheng, ; YANG Meicheng
Drug Standards of China 2025;26(1):093-098
Objective: To systematically analyze the revisions content and technological development trends of microbiological standards in the Chinese Pharmacopoeia (ChP) 2025 Edition, and explore its novel requirements in risk-based pharmaceutical product lifecycle management.
Methods: A comprehensive review was conducted on 26 microbiological-related standards to summarize the revision directions and scientific implications from perspectives including the revision overview, international harmonization of microbiological standards, risk-based quality management system, and novel tools and methods with Chinese characteristics.
Results: The ChP 2025 edition demonstrates three prominent features in microbiological-related standards: enhanced international harmonization, introduced emerging molecular biological technologies, and established a risk-based microbiological quality control system.
Conclusion: The new edition of the Pharmacopoeia has systematically constructed a microbiological standard system, which significantly improves the scientificity, standardization and applicability of the standards, providing a crucial support for advancing the microbiological quality control in pharmaceutical industries of China.
4.Anthocyanins from Lycium ruthenicum Murr combined with human adipose-derived pericytes/perivascular cells support proliferation of umbilical cord blood hematopoietic stem/progenitor cells
Yamei SHEN ; Yunxia NIU ; Tingting YANG ; Jie MA ; Daihong HU ; Bo ZHENG
Chinese Journal of Tissue Engineering Research 2025;29(1):58-64
BACKGROUND:Anthocyanin is one of the most important active components in Lycium ruthenicum Murr,which has antioxidant and immunomodulatory effects.CD146+human adipose-derived pericytes/perivascular cells(CD146+hAD-PCs)are the progenitors of bone marrow mesenchymal stem cells,which can promote the proliferation and differentiation of hematopoietic stem/progenitor cells in vitro.The support effect of anthocyanin in combination with CD146+hAD-PCs on umbilical cord blood hematopoietic stem/progenitor cells remains to be studied. OBJECTIVE:To investigate the supporting effect of anthocyanins in Lycium ruthenicum Murr(ALRM)combined with CD146+hAD-PCs on umbilical cord blood CD34+hematopoietic stem/progenitor cells(UCB CD34+HSPCs)in vitro. METHODS:The CCK-8 assay was used to detect the effect of different concentrations(0,200,400,600,800,1 000 mg/L)of ALRM on the proliferation of CD146+hAD-PCs.Flow cytometry was used to detect the effect of ALRM on the cell cycle of CD146+hAD-PCs.The co-culture experiments were divided into blank group,ALRM group,CD146+hAD-PCs group,and ALRM+CD146+hAD-PCs group to analyze the in vitro supporting effect of ALRM combined with CD146+hAD-PCs on UCB CD34+HSPCs.The number of expanded cells and the number of colony-forming units were compared at 1,2,and 4 weeks of co-culture.The immunophenotype of cells was detected by flow cytometry.The level of cytokines was detected by enzyme-linked immunosorbent assay. RESULTS AND CONCLUSION:(1)The cell viability of CD146+hAD-PCs was highest at an ALRM concentration of 200 mg/L,the proportion of G0/G1 phase cells decreased and the proportion of S and G2/M phase cells increased in CD146+hAD-PCs(P<0.01).(2)The change in number of UCB CD34+HSPCs cells in the ALRM+CD146+hAD-PCs group was higher than that in the ALRM group at 1,2,and 4 weeks of co-culture(all P<0.05),and higher than that in CD146+hAD-PCs group at 2 and 4 weeks of co-culture(all P<0.05).The number of cells in the ALRM group and blank group decreased gradually with the extension of co-culture time.(3)Colony forming capacity and immunophenotype analysis:The number of colony-forming units in the ALRM+CD146+hAD-PCs group was higher than that in the CD146+hAD-PCs group and ALRM group at 1 and 2 weeks of co-culture(P<0.05).The proportion of CD45+and CD34+CD33-cells in the ALRM+CD146+hAD-PCs group was higher than that in the CD146+hAD-PCs group at 1 and 2 weeks of co-culture(all P<0.01).(4)Changes in cytokines:Interleukin-2 level in the ALRM+CD146+hAD-PCs group was higher than that in the ALRM and CD146+hAD-PCs groups(P<0.05).The interleukin-3 content of the ALRM+CD146+hAD-PCs group was higher than that of the CD146+hAD-PCs group at 2 and 4 weeks(P<0.05).The expression level of granulocyte colony-stimulating factor in the ALRM+CD146+hAD-PCs group was higher than that in the CD146+hAD-PCs group at 1 week,and higher than that in the ALRM group and CD146+hAD-PCs group at 2 weeks(P<0.01).Interferon-γ content in the ALRM group and ALRM+CD146+hAD-PCs group was lower than that in the CD146+hAD-PCs group at 1,2,and 4 weeks of co-culture(P<0.01).(5)Due to the absence of stromal cells in the blank group,UCB CD34+HSPCs could not be counted after 1 week of co-culture and were not subjected to immunophenotyping,colony analysis,or cytokine assays.(6)In summary,ALRM can promote the expansion of UCB CD34+HSPCs in vitro by promoting CD146+hAD-PCs proliferation and cell cycle transformation,which is of great value in hematopoietic stem cell transplantation.
5.Pathogenesis and treatment progress of flap ischemia-reperfusion injury
Bo HE ; Wen CHEN ; Suilu MA ; Zhijun HE ; Yuan SONG ; Jinpeng LI ; Tao LIU ; Xiaotao WEI ; Weiwei WANG ; Jing XIE
Chinese Journal of Tissue Engineering Research 2025;29(6):1230-1238
BACKGROUND:Flap transplantation technique is a commonly used surgical procedure for the treatment of severe tissue defects,but postoperative flap necrosis is easily triggered by ischemia-reperfusion injury.Therefore,it is still an important research topic to improve the survival rate of transplanted flaps. OBJECTIVE:To review the pathogenesis and latest treatment progress of flap ischemia-reperfusion injury. METHODS:CNKI,WanFang Database and PubMed database were searched for relevant literature published from 2014 to 2024.The search terms used were"flap,ischemia-reperfusion injury,inflammatory response,oxidative stress,Ca2+overload,apoptosis,mesenchymal stem cells,platelet-rich plasma,signaling pathways,shock wave,pretreatment"in Chinese and English.After elimination of irrelevant literature,poor quality and obsolete literature,77 documents were finally included for review. RESULTS AND CONCLUSION:Flap ischemia/reperfusion injury may be related to pathological factors such as inflammatory response,oxidative stress response,Ca2+overload,and apoptosis,which can cause apoptosis of vascular endothelial cells,vascular damage and microcirculation disorders in the flap,and eventually lead to flap necrosis.Studies have found that mesenchymal stem cell transplantation,platelet-rich plasma,signaling pathway modulators,shock waves,and pretreatment can alleviate flap ischemia/reperfusion injuries from different aspects and to varying degrees,and reduce the necrosis rate and necrosis area of the grafted flap.Although there are many therapeutic methods for skin flap ischemia/reperfusion injury,a unified and effective therapeutic method has not yet been developed in the clinic,and the advantages and disadvantages of various therapeutic methods have not yet been compared.Most of the studies remain in the stage of animal experiments,rarely involving clinical observations.Therefore,a lot of research is required in the future to gradually move from animal experiments to the clinic in order to better serve the clinic.
6.Effect of oxymatrine on expression of stem markers and osteogenic differentiation of periodontal ligament stem cells
Jing LUO ; Min YONG ; Qi CHEN ; Changyi YANG ; Tian ZHAO ; Jing MA ; Donglan MEI ; Jinpeng HU ; Zhaojun YANG ; Yuran WANG ; Bo LIU
Chinese Journal of Tissue Engineering Research 2025;29(19):3992-3999
BACKGROUND:Human periodontal ligament stem cells are potential functional cells for periodontal tissue engineering.However,long-term in vitro culture may lead to reduced stemness and replicative senescence of periodontal ligament stem cells,which may impair the therapeutic effect of human periodontal ligament stem cells. OBJECTIVE:To investigate the effect of oxymatrine on the stemness maintenance and osteogenic differentiation of periodontal ligament stem cells in vitro,and to explore the potential mechanism. METHODS:Periodontal ligament stem cells were isolated from human periodontal ligament tissues by tissue explant enzyme digestion and cultured.The surface markers of mesenchymal cells were identified by flow cytometry.Periodontal ligament stem cells were incubated with 0,2.5,5,and 10 μg/mL oxymatrine.The effect of oxymatrine on the proliferation activity of periodontal ligament stem cells was detected by CCK8 assay.The appropriate drug concentration for subsequent experiments was screened.Western blot assay was used to detect the expression of stem cell non-specific proteins SOX2 and OCT4 in periodontal ligament stem cells.qRT-PCR and western blot assay were used to detect the expression levels of related osteogenic genes and proteins in periodontal ligament stem cells. RESULTS AND CONCLUSION:(1)The results of CCK8 assay showed that 2.5 μg/mL oxymatrine significantly enhanced the proliferative activity of periodontal stem cells,and the subsequent experiment selected 2.5 μg/mL oxymatrine to intervene.(2)Compared with the blank control group,the protein expression level of SOX2,a stem marker of periodontal ligament stem cells in the oxymatrine group did not change significantly(P>0.05),and the expression of OCT4 was significantly up-regulated(P<0.05).(3)Compared with the osteogenic induction group,the osteogenic genes ALP,RUNX2 mRNA expression and their osteogenic associated protein ALP protein expression of periodontal ligament stem cells were significantly down-regulated in the oxymatrine+osteogenic induction group(P<0.05).(4)The oxymatrine up-regulated the expression of stemness markers of periodontal ligament stem cells and inhibited the bone differentiation of periodontal ligament stem cells,and the results of high-throughput sequencing showed that it may be associated with WNT2,WNT16,COMP,and BMP6.
7.The Role and Mechanism of Lactate Produced by Exercise in The Nervous System
Jing MA ; Shu-Min BO ; Yang CHENG
Progress in Biochemistry and Biophysics 2025;52(2):348-357
Lactate, with a chemical formula of C3H6O3, is an intermediate product of glucose metabolism in the body and a raw material for hepatic gluconeogenesis. Under physiological resting conditions, the body mainly relies on aerobic oxidation of sugar and fat for energy supply, so the blood lactate concentration is lower. However, during exercise, the enhanced glycolysis in skeletal muscles leads to the significant release of lactate into the bloodstream, causing a marked increase in blood lactate concentration. Traditionally, lactate has been regarded as a metabolic waste product of glycolysis and a contributor to exercise-induced fatigue. Nevertheless, recent studies have revealed that, in humans, lactate is a major vehicle for carbohydrate carbon distribution and metabolism, serving not only as an energy substance alongside glucose but also as a vital component in various biological pathways involved in cardiac energetics, muscle adaptation, brain function, growth and development, and inflammation therapy. Two primary pathways can elevate lactate levels in neurons during exercise. One is peripheral skeletal muscle-derived lactate, which can enter the bloodstream and cross the blood-brain barrier into the brain with the assistance of monocarboxylate transporters (MCTs) from the solute carrier family 16 (SLC16). The other is the central brain-derived pathway. During exercise, neuronal activity is enhanced, promoting the secretion of neuroactive substances such as glutamate, norepinephrine, and serotonin in the brain. This activates astrocytes to break down glycogen into lactate and stimulates glutamate from the presynaptic terminal into the synaptic cleft. It upregulates the glucose transport protein-1 (GLUT-1) expression, allowing astrocytes to convert glucose into lactate through glycolysis. The lactate is produced via peripheral pathways and central pathways during exercise are transported by astrocyte membrane monocarboxylate transporters MCT1 and MCT4 to the extracellular space, where neurons take it up through neuronal cell membrane MCT2. The lactate in neurons can serve as an alternative energy source of glucose for neuronal functional activities, meeting the increased energy demands of synaptic activity during exercise, and maintaining energy balance and normal physiological function in the brain. Additionally, acting as a signaling molecule lactate can enhance synaptic plasticity through the SIRT1/PGC-1α/FNDC5 and ERK1/2 signaling pathways, lactate can promote angiogenesis by upregulating VEGF-A expression through the PI3K/Akt and ERK1/2 signaling pathways, stimulate neurogenesis via the Akt/PKB signaling pathway, and reduce neuroinflammation through activation of the “lactate timer”. Overall, lactate contributes to the protection of neurons, the promotion of learning and memory, the enhancement of synaptic plasticity, and the reduction of neuroinflammation in the nervous system. While lactate may serve as a potential mediator for information exchange between the peripheral and central nervous systems during exercise, further experimental research is needed to elucidate its action mechanisms in the nervous system. In addition, future studies should utilize advanced neurophysiological and molecular biology techniques to uncover the importance of lactate in maintaining brain function and preventing neurological diseases. Accordingly, this article first reviews the historical research on lactate, then summarizes the metabolic characteristics and neuronal sources of lactate, and finally explores the role and mechanisms of exercise-induced lactate in the nervous system, aiming to provide new perspectives and targets for understanding the mechanisms underlying exercise promotion of brain health.
8.Long-Term Real-World Outcomes of Tenofovir Alafenamide in Chronic Hepatitis B: Detailed Analysis of Treatment-Naive and Experienced Patients
Yu-Xuan SONG ; Guang-Jun SONG ; Hui MA ; Bo FENG ; Yan-Di XIE
The Korean Journal of Gastroenterology 2025;85(1):64-72
Background/Aims:
This study assessed the long-term efficacy and safety of tenofovir alafenamide (TAF) in real-world settings.
Methods:
Patients who were candidates for TAF treatment and were followed up at 12-week intervals over 192 weeks were enrolled in this study.
Results:
One hundred and forty-four patients (50 treatment-naive and 94 treatment-experienced) were included in this study. The cumulative incidence rates of cirrhosis and hepatocellular carcinoma at 192 weeks were 3.9% and 0.7%, respectively. In treatment-naive patients, the rates of a virological response, HBeAg conversion, and HBsAg loss at 192 weeks were 100%, 33.3%, and 2%, respectively. The treatment-naive patients exhibited higher baseline HBsAg levels than the treatment-experienced patients (4.31 log10IU/mL vs. 3.97 log10IU/mL). A significant decrease in the HBsAg levels from the baseline was observed at 144 and 192 weeks in the treatment-naive patients (p=0.01). The baseline body mass index (BMI) <25 kg/m2 (p=0.02) and HBsAg <3.3 log10IU/mL (p=0.04) were identified as predictive factors for a decrease in HBsAg ≥0.5 log10IU/mL at 48 weeks. The eGFR levels were consistently lower in the treatment-experienced patients throughout the study. Although the treatment-naive patients showed no abnormal increases in urinary URBP, the treatment-experienced patients showed elevated urinary β2MG and NAG levels at the baseline, which decreased over the treatment course. The total cholesterol, triglyceride, and low-density lipoprotein levels were similar in both groups.
Conclusions
Prolonging the TAF treatment duration enhances the virological response rate. The decline in HBsAg levels was more significant in the treatment-naive patients than in the treatment-experienced patients. The baseline BMI <25 kg/m2 and HBsAg <3.3 log10IU/mL were predictive factors for a significant decline in HBsAg at 48 weeks. TAF has high renal safety and no significant impact on lipid levels.
9.Exercise-induced Mitohormesis in Counteracting Age-related Sarcopenia
Zi-Yi ZHANG ; Mei MA ; Hai BO ; Tao LIU ; Yong ZHANG
Progress in Biochemistry and Biophysics 2025;52(6):1349-1361
Sarcopenia, an age-related degenerative skeletal muscle disorder characterized by progressive loss of muscle mass, diminished strength, and impaired physical function, poses substantial challenges to global healthy aging initiatives. The pathogenesis of this condition is fundamentally rooted in mitochondrial dysfunction, manifested through defective energy metabolism, disrupted redox equilibrium, imbalanced dynamics, and compromised organelle quality control. This comprehensive review elucidates the central role of exercise-induced mitochondrial hormesis as a critical adaptive mechanism counteracting sarcopenia. Mitohormesis represents an evolutionarily conserved stress response wherein sublethal mitochondrial perturbations, particularly transient low-dose reactive oxygen species (ROS) generated during muscle contraction, activate cytoprotective signaling cascades rather than inflicting macromolecular damage. The mechanistic foundation of this process involves ROS functioning as essential signaling molecules that activate the Keap1 nuclear factor erythroid 2 related factor 2 (Nrf2) antioxidant response element pathway. This activation drives transcriptional upregulation of phase II detoxifying enzymes including superoxide dismutase (SOD) and glutathione peroxidase (GPx), thereby enhancing cellular redox buffering capacity. Crucially, Nrf2 engages in bidirectional molecular crosstalk with peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC-1α), the principal regulator orchestrating mitochondrial biogenesis through coordinated induction of nuclear respiratory factors 1 and 2 (NRF1/2) along with mitochondrial transcription factor A (Tfam), collectively facilitating mitochondrial DNA replication and respiratory complex assembly. Concurrently, exercise-induced alterations in cellular energy status, specifically diminished ATP to AMP ratios, potently activate AMP activated protein kinase (AMPK). This energy-sensing kinase phosphorylates PGC-1α while concomitantly stimulating NAD dependent deacetylase sirtuin 1 (SIRT1) activity, which further potentiates PGC-1α function through post-translational deacetylation. The integrated AMPK/PGC-1α/SIRT1 axis coordinates mitochondrial biogenesis, optimizes network architecture through regulation of fusion proteins mitofusin 1 (Mfn1), mitofusin 2 (Mfn2) and optic atrophy protein 1 (OPA1), and enhances clearance of damaged organelles via selective activation of mitophagy receptors BCL2 interacting protein 3 (Bnip1) and FUN14 domain containing 1 (FNDC1). Exercise further stimulates the mitochondrial unfolded protein response (UPRmt), increasing molecular chaperones such as heat shock protein 60 (HSP60) and HSP10 to preserve proteostasis. Within the mitochondrial matrix, SIRT3 fine-tunes metabolic flux through deacetylation of electron transport chain components, improving phosphorylation efficiency while attenuating pathological ROS emission. Distinct exercise modalities differentially engage these pathways. Aerobic endurance training primarily activates AMPK/PGC-1α signaling and UPRmt to expand mitochondrial volume and oxidative capacity. Resistance training exploits mechanical tension to acutely stimulate mechanistic target of rapamycin complex 1 (mTORC1) mediated protein synthesis while modulating dynamin related protein 1 (Drp1) phosphorylation dynamics to support mitochondrial network reorganization. High intensity interval training generates potent metabolic oscillations that rapidly amplify AMPK/PGC-1α and Nrf2 activation, demonstrating particular efficacy in insulin-resistant phenotypes. Strategically designed concurrent training regimens synergistically integrate these adaptations. Mitochondrial-nuclear communication through tricarboxylic acid cycle metabolites and mitochondrially derived peptides such as mitochondrial open reading frame of 12s rRNA-c (MOTS-c) coordinates systemic metabolic reprogramming, with exercise-responsive myokines including fibroblast growth factor 21 (FGF-21) mediating inter-tissue signaling to reduce inflammation and enhance insulin sensitivity. This integrated framework provides the scientific foundation for precision exercise interventions targeting mitochondrial pathophysiology in sarcopenia, incorporating biomarker monitoring and exploring pharmacological potentiators including nicotinamide riboside and MOTS-c mimetics. Future investigations should delineate temporal dynamics of mitohormesis signaling and epigenetic regulation to optimize therapeutic approaches for age-related muscle decline.
10.Current research status of ferroptosis in Parkinson disease:A visual analysis based on CiteSpace
Journal of Apoplexy and Nervous Diseases 2025;42(5):459-466
Objective To investigate the current research status of ferroptosis in Parkinson disease in recent years. Methods CiteSpace was used to perform bibliometric and visual analyses of the articles on the mechanism of action of ferroptosis in Parkinson disease and related prevention and treatment measures in CNKI and Web of Science (WoS). Results A total of 92 articles from CNKI and 273 articles from WoS were included in this study. There was a tendency of increase in the number of articles published in China and globally. In CNKI, the keywords of ferroptosis, Parkinson's disease, oxidative stress, and traditional Chinese medicine were cited for many times, while in WoS, activation, cell death, alpha-synuclein, and Parkinson disease were cited for many times. There were 7 clusters of keywords in CNKI and 12 clusters in WoS. The top 5 authors (teams) in terms of the number of publications in CNKI were Yang Xinling; Zhang Lijie; Li Shaodan; Hao Mengdie; and Lu Ranran, while the top 5 authors (teams) in WoS were Ayton, Scott; Zhu, Meiling; Qu, Le; Devos, David; and Xie, Junxia. The number of team members in China was lower than that in foreign countries, mainly small team cooperation. As for the number of articles published by institutional cooperation, Qingdao University published the highest number of articles in CNKI, while the University of Melbourne published the highest number of articles in WoS. Biochemistry was the subject with the highest frequency, and there were intersections between disciplines. China was the core representative of state cooperation with the highest frequency. Conclusion The research on the association between Parkinson disease and ferroptosis mainly focuses on oxidative stress, neuroprotection, traditional Chinese medicine, and neuroinflammation, among which neuroprotection and neuroinflammation are the latest trends for development. Therefore, there may be more targeted therapies for neuroinflammation and therapies that stimulate neuroprotection in the future to alleviate pain and improve the quality of life of patients.
Parkinson Disease

Result Analysis
Print
Save
E-mail