1.Histones of Neutrophil Extracellular Traps Induce CD11b Expression in Brain Pericytes Via Dectin-1 after Traumatic Brain Injury.
Yang-Wuyue LIU ; Jingyu ZHANG ; Wanda BI ; Mi ZHOU ; Jiabo LI ; Tiantian XIONG ; Nan YANG ; Li ZHAO ; Xing CHEN ; Yuanguo ZHOU ; Wenhui HE ; Teng YANG ; Hao WANG ; Lunshan XU ; Shuang-Shuang DAI
Neuroscience Bulletin 2022;38(10):1199-1214
The brain pericyte is a unique and indispensable part of the blood-brain barrier (BBB), and contributes to several pathological processes in traumatic brain injury (TBI). However, the cellular and molecular mechanisms by which pericytes are regulated in the damaged brain are largely unknown. Here, we show that the formation of neutrophil extracellular traps (NETs) induces the appearance of CD11b+ pericytes after TBI. These CD11b+ pericyte subsets are characterized by increased permeability and pro-inflammatory profiles compared to CD11b- pericytes. Moreover, histones from NETs by Dectin-1 facilitate CD11b induction in brain pericytes in PKC-c-Jun dependent manner, resulting in neuroinflammation and BBB dysfunction after TBI. These data indicate that neutrophil-NET-pericyte and histone-Dectin-1-CD11b are possible mechanisms for the activation and dysfunction of pericytes. Targeting NETs formation and Dectin-1 are promising means of treating TBI.
Blood-Brain Barrier/metabolism*
;
Brain/pathology*
;
Brain Injuries, Traumatic/metabolism*
;
Extracellular Traps/metabolism*
;
Histones
;
Humans
;
Lectins, C-Type
;
Pericytes/pathology*
2.Effects of Intraperitoneal N-methyl-D-aspartate (NMDA) Administration on Nociceptive/Repetitive Behaviors in Juvenile Mice
Seonmin KIM ; Do Gyeong KIM ; Edson luck GONZALES ; Darine Froy N MABUNGA ; Dongpil SHIN ; Se Jin JEON ; Chan Young SHIN ; TaeJin AHN ; Kyoung Ja KWON
Biomolecules & Therapeutics 2019;27(2):168-177
Dysregulation of excitatory neurotransmission has been implicated in the pathogenesis of neuropsychiatric disorders. Pharmacological inhibition of N-methyl-D-aspartate (NMDA) receptors is widely used to model neurobehavioral pathologies and underlying mechanisms. There is ample evidence that overstimulation of NMDA-dependent neurotransmission may induce neurobehavioral abnormalities, such as repetitive behaviors and hypersensitization to nociception and cognitive disruption, pharmacological modeling using NMDA has been limited due to the induction of neurotoxicity and blood brain barrier breakdown, especially in young animals. In this study, we examined the effects of intraperitoneal NMDA-administration on nociceptive and repetitive behaviors in ICR mice. Intraperitoneal injection of NMDA induced repetitive grooming and tail biting/licking behaviors in a dose- and age-dependent manner. Nociceptive and repetitive behaviors were more prominent in juvenile mice than adult mice. We did not observe extensive blood brain barrier breakdown or neuronal cell death after peritoneal injection of NMDA, indicating limited neurotoxic effects despite a significant increase in NMDA concentration in the cerebrospinal fluid. These findings suggest that the observed behavioral changes were not mediated by general NMDA toxicity. In the hot plate test, we found that the latency of paw licking and jumping decreased in the NMDA-exposed mice especially in the 75 mg/kg group, suggesting increased nociceptive sensitivity in NMDA-treated animals. Repetitive behaviors and increased pain sensitivity are often comorbid in psychiatric disorders (e.g., autism spectrum disorder). Therefore, the behavioral characteristics of intraperitoneal NMDA-administered mice described herein may be valuable for studying the mechanisms underlying relevant disorders and screening candidate therapeutic molecules.
Adult
;
Animals
;
Autistic Disorder
;
Blood-Brain Barrier
;
Cell Death
;
Cerebrospinal Fluid
;
Grooming
;
Humans
;
Injections, Intraperitoneal
;
Mass Screening
;
Mice
;
Mice, Inbred ICR
;
N-Methylaspartate
;
Neurons
;
Nociception
;
Pathology
;
Synaptic Transmission
;
Tail
3.Research progress on neural mechanism of peripheral inflammation in Parkinson's disease.
Yong-Ting LIU ; Ming-Hao SUN ; Chun-Wei CAI ; Chao REN ; Hai-Chen NIU
Acta Physiologica Sinica 2019;71(5):732-740
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by loss of dopaminergic (DA) neurons in the dense part of the substantia nigra (SNpc). Postmortem analysis of PD patients and experimental animal studies found that microglial cell activation and increased levels of pro-inflammatory factors were common features of PD brain tissue. At the same time, the invasion and accumulation of peripheric immune cells were detected in the brain of PD patients. In this paper, peripheral inflammation across the blood-brain barrier (BBB), the misfolded α-synuclein (α-syn)-induced microglial cell activation and intracerebral inflammation in PD are summarized, providing potential therapeutic measures for delaying the onset of PD.
Animals
;
Blood-Brain Barrier
;
Dopaminergic Neurons
;
pathology
;
Humans
;
Inflammation
;
pathology
;
Microglia
;
Parkinson Disease
;
pathology
;
Substantia Nigra
;
pathology
;
alpha-Synuclein
4.Regulation of Diabetes: a Therapeutic Strategy for Alzheimer's Disease?
Kee Chan AHN ; Cameron R LEARMAN ; Glen B BAKER ; Charles L WEAVER ; Phil Sang CHUNG ; Hyung Gun KIM ; Mee Sook SONG
Journal of Korean Medical Science 2019;34(46):e297-
Accumulated evidence suggests that sporadic cases of Alzheimer's disease (AD) make up more than 95% of total AD patients, and diabetes has been implicated as a strong risk factor for the development of AD. Diabetes shares pathological features of AD, such as impaired insulin signaling, increased oxidative stress, increased amyloid-beta (Aβ) production, tauopathy and cerebrovascular complication. Due to shared pathologies between the two diseases, anti-diabetic drugs may be a suitable therapeutic option for AD treatment. In this article, we will discuss the well-known pathologies of AD, including Aβ plaques and tau tangles, as well as other mechanisms shared in AD and diabetes including reactive glia and the breakdown of blood brain barrier in order to evaluate the presence of any potential, indirect or direct links of pre-diabetic conditions to AD pathology. In addition, clinical evidence of high incidence of diabetic patients to the development of AD are described together with application of anti-diabetic medications to AD patients.
Alzheimer Disease
;
Blood-Brain Barrier
;
Encephalitis
;
Humans
;
Incidence
;
Insulin
;
Neuroglia
;
Oxidative Stress
;
Pathology
;
Risk Factors
;
Tauopathies
5.Fluoxetine is Neuroprotective in Early Brain Injury via its Anti-inflammatory and Anti-apoptotic Effects in a Rat Experimental Subarachnoid Hemorrhage Model.
Hui-Min HU ; Bin LI ; Xiao-Dong WANG ; Yun-Shan GUO ; Hua HUI ; Hai-Ping ZHANG ; Biao WANG ; Da-Geng HUANG ; Ding-Jun HAO
Neuroscience Bulletin 2018;34(6):951-962
Fluoxetine, an anti-depressant drug, has recently been shown to provide neuroprotection in central nervous system injury, but its roles in subarachnoid hemorrhage (SAH) remain unclear. In this study, we aimed to evaluate whether fluoxetine attenuates early brain injury (EBI) after SAH. We demonstrated that intraperitoneal injection of fluoxetine (10 mg/kg per day) significantly attenuated brain edema and blood-brain barrier (BBB) disruption, microglial activation, and neuronal apoptosis in EBI after experimental SAH, as evidenced by the reduction of brain water content and Evans blue dye extravasation, prevention of disruption of the tight junction proteins zonula occludens-1, claudin-5, and occludin, a decrease of cells staining positive for Iba-1, ED-1, and TUNEL and a decline in IL-1β, IL-6, TNF-α, MDA, 3-nitrotyrosine, and 8-OHDG levels. Moreover, fluoxetine significantly improved the neurological deficits of EBI and long-term sensorimotor behavioral deficits following SAH in a rat model. These results indicated that fluoxetine has a neuroprotective effect after experimental SAH.
Animals
;
Apoptosis
;
drug effects
;
Blood-Brain Barrier
;
drug effects
;
Brain Edema
;
drug therapy
;
etiology
;
Cytokines
;
genetics
;
metabolism
;
Disease Models, Animal
;
Fluoxetine
;
pharmacology
;
therapeutic use
;
In Situ Nick-End Labeling
;
Male
;
Neuroprotective Agents
;
pharmacology
;
therapeutic use
;
Pain Measurement
;
Psychomotor Performance
;
drug effects
;
RNA, Messenger
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Subarachnoid Hemorrhage
;
complications
;
drug therapy
;
pathology
;
Time Factors
;
Vasospasm, Intracranial
;
drug therapy
;
etiology
6.Particulate Matter and Cognitive Function
Jihyun ROH ; Han Yong JUNG ; Kang Joon LEE
Journal of Korean Neuropsychiatric Association 2018;57(1):81-85
The term “particulate Matter (PM)” refers to the mixture of small-sized solid particles and liquid droplets floating in the air, and is referred to as PM₁₀ ( < 10 µm), PM(2.5) ( < 2.5 µm) and PM(1.0). Much PM is an anthropogenic substance generated by transportation or industrial activities, which is transformed into a second toxic substance by chemical reactions in the atmosphere. PM reaches the brain directly through olfactory transport, or through the blood-brain barrier during systemic circulation. PM that enters the local cerebral circulation causes neuroinflammation through microglial cells and endotoxins. According to previous studies, greater PM exposure results in lower brain volume, especially white matter. Among neurodevelopmental disorders, the correlation between the occurrence of autism spectrum disorder and exposure to PM is widely known. Other studies have found that exposure to PM was associated with low cognitive function and increased rate of cognitive aging. PM can also cause pathology of early Alzheimer's disease and increases the risk of Alzheimer's dementia and mild cognitive impairment.
Air Pollution
;
Alzheimer Disease
;
Atmosphere
;
Autism Spectrum Disorder
;
Blood-Brain Barrier
;
Brain
;
Cerebrovascular Circulation
;
Cognition
;
Cognitive Aging
;
Dementia
;
Endotoxins
;
Mild Cognitive Impairment
;
Neurodevelopmental Disorders
;
Particulate Matter
;
Pathology
;
Transportation
;
White Matter
7.Extracellular Vesicles in Neurodegenerative Diseases: A Double-Edged Sword.
Tissue Engineering and Regenerative Medicine 2017;14(6):667-678
Extracellular vesicles (EVs), a heterogenous group of membrane-bound particles, are virtually secreted by all cells and play important roles in cell-cell communication. Loaded with proteins, mRNAs, non-coding RNAs and membrane lipids from their donor cells, these vesicles participate in normal physiological and pathogenic processes. In addition, these subcellular vesicles are implicated in the progression of neurodegenerative disorders. Accumulating evidence suggests that intercellular communication via EVs is responsible for the propagation of key pathogenic proteins involved in the pathogenesis of amyotrophic lateral sclerosis, Parkinson's diseases, Alzheimer's diseases and other neurodegenerative disorders. For therapeutic perspective, EVs present advantage over other synthetic drug delivery systems or cell therapy; ability to cross biological barriers including blood brain barrier (BBB), ability to modulate inflammation and immune responses, stability and longer biodistribution with lack of tumorigenicity. In this review, we summarized the current state of EV research in central nervous system in terms of their values in diagnosis, disease pathology and therapeutic applications.
Amyotrophic Lateral Sclerosis
;
Blood-Brain Barrier
;
Cell- and Tissue-Based Therapy
;
Central Nervous System
;
Diagnosis
;
Drug Delivery Systems
;
Extracellular Vesicles*
;
Humans
;
Inflammation
;
Membrane Lipids
;
Neurodegenerative Diseases*
;
Pathology
;
RNA, Messenger
;
RNA, Untranslated
;
Tissue Donors
8.Telmisartan reduced cerebral edema by inhibiting NLRP3 inflammasome in mice with cold brain injury.
Xin WEI ; Chen-Chen HU ; Ya-Li ZHANG ; Shang-Long YAO ; Wei-Ke MAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(4):576-583
The aim of this study was to investigate the possible beneficial role of telmisartan in cerebral edema after traumatic brain injury (TBI) and the potential mechanisms related to the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) pyrin domain-containing 3 (NLRP3) inflammasome activation. TBI model was established by cold-induced brain injury. Male C57BL/6 mice were randomly assigned into 3, 6, 12, 24, 48 and 72 h survival groups to investigate cerebral edema development with time and received 0, 5, 10, 20 and 40 mg/kg telmisartan by oral gavage, 1 h prior to TBI to determine the efficient anti-edemic dose. The therapeutic window was identified by post-treating 30 min, 1 h, 2 h and 4 h after TBI. Blood-brain barrier (BBB) integrity, the neurological function and histological injury were assessed, at the same time, the mRNA and protein expression levels of NLRP3 inflammasome, IL-1β and IL-18 concentrations in peri-contused brain tissue were measured 24 h post TBI. The results showed that the traumatic cerebral edema occurred from 6 h, reached the peak at 24 h and recovered to the baseline 72 h after TBI. A single oral dose of 5, 10 and 20 mg/kg telmisartan could reduce cerebral edema. Post-treatment up to 2 h effectively limited the edema development. Furthermore, prophylactic administration of telmisartan markedly inhibited BBB impairment, NLRP3, apoptotic speck-containing protein (ASC) and Caspase-1 activation, as well as IL-1β and IL-18 maturation, subsequently improved the neurological outcomes. In conclusion, telmisartan can reduce traumatic cerebral edema by inhibiting the NLRP3 inflammasome-regulated IL-1β and IL-18 accumulation.
Animals
;
Benzimidazoles
;
administration & dosage
;
Benzoates
;
administration & dosage
;
Blood-Brain Barrier
;
drug effects
;
Brain Edema
;
drug therapy
;
genetics
;
pathology
;
Brain Injuries, Traumatic
;
drug therapy
;
genetics
;
pathology
;
Caspase 1
;
biosynthesis
;
Gene Expression Regulation
;
drug effects
;
Humans
;
Inflammasomes
;
adverse effects
;
genetics
;
Interleukin-18
;
biosynthesis
;
Interleukin-1beta
;
biosynthesis
;
Male
;
Mice
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
biosynthesis
;
genetics
;
Signal Transduction
;
drug effects
9.Permeability Parameters Measured with Dynamic Contrast-Enhanced MRI: Correlation with the Extravasation of Evans Blue in a Rat Model of Transient Cerebral Ischemia.
Hyun Seok CHOI ; Sung Soo AHN ; Na Young SHIN ; Jinna KIM ; Jae Hyung KIM ; Jong Eun LEE ; Hye Yeon LEE ; Ji Hoe HEO ; Seung Koo LEE
Korean Journal of Radiology 2015;16(4):791-797
OBJECTIVE: The purpose of this study was to correlate permeability parameters measured with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using a clinical 3-tesla scanner with extravasation of Evans blue in a rat model with transient cerebral ischemia. MATERIALS AND METHODS: Sprague-Dawley rats (n = 13) with transient middle cerebral artery occlusion were imaged using a 3-tesla MRI with an 8-channel wrist coil. DCE-MRI was performed 12 hours, 18 hours, and 36 hours after reperfusion. Permeability parameters (K(trans), v(e), and v(p)) from DCE-MRI were calculated. Evans blue was injected after DCE-MRI and extravasation of Evans blue was correlated as a reference with the integrity of the blood-brain barrier. Correlation analysis was performed between permeability parameters and the extravasation of Evans blue. RESULTS: All permeability parameters (K(trans), v(e), and v(p)) showed a linear correlation with extravasation of Evans blue. Among them, K(trans) showed highest values of both the correlation coefficient and the coefficient of determination (0.687 and 0.473 respectively, p < 0.001). CONCLUSION: Permeability parameters obtained by DCE-MRI at 3-T are well-correlated with Evans blue extravasation, and K(trans) shows the strongest correlation among the tested parameters.
Animals
;
Blood-Brain Barrier/pathology
;
Capillary Permeability
;
Contrast Media
;
Disease Models, Animal
;
Evans Blue/analysis
;
Ischemic Attack, Transient/*diagnosis
;
Magnetic Resonance Imaging/instrumentation/*methods
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Stroke/diagnosis
10.Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.
Jae Young KIM ; Yong Woo LEE ; Jae Hwan KIM ; Won Taek LEE ; Kyung Ah PARK ; Jong Eun LEE
Journal of Korean Medical Science 2015;30(7):943-952
Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-kappaB (NF-kappaB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-kappaB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.
Active Transport, Cell Nucleus/drug effects
;
Agmatine/*therapeutic use
;
Animals
;
Apoptosis/*drug effects
;
Aquaporins/metabolism
;
Blood-Brain Barrier/physiopathology
;
Brain Edema/*drug therapy
;
Brain Injuries/*pathology
;
Male
;
Mitogen-Activated Protein Kinases/metabolism
;
Motor Cortex/*pathology
;
NF-kappa B/metabolism
;
Phosphorylation/drug effects
;
Rats
;
Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail