1.Soybean isoflavones alleviate cerebral ischemia/reperfusion injury in rats by inhibiting ferroptosis and inflammatory cascade reaction.
Shai LI ; Li LI ; Si Min MIN ; Sai Sai LIU ; Zhi Wen QIN ; Zhi Shang XIONG ; Jian Guo XU ; Bo Wen WANG ; Du Shan DING ; Shi Di ZHAO
Journal of Southern Medical University 2023;43(2):323-330
OBJECTIVE:
To explore the mechanism that mediates the effect of soybean isoflavones (SI) against cerebral ischemia/reperfusion (I/R) injury in light of the regulation of regional cerebral blood flow (rCBF), ferroptosis, inflammatory response and blood-brain barrier (BBB) permeability.
METHODS:
A total of 120 male SD rats were equally randomized into sham-operated group (Sham group), cerebral I/R injury group and SI pretreatment group (SI group). Focal cerebral I/R injury was induced in the latter two groups using a modified monofilament occlusion technique, and the intraoperative changes of real-time cerebral cortex blood flow were monitored using a laser Doppler flowmeter (LDF). The postoperative changes of cerebral pathological morphology and the ultrastructure of the neurons and the BBB were observed with optical and transmission electron microscopy. The neurological deficits of the rats was assessed, and the severities of cerebral infarction, brain edema and BBB disruption were quantified. The contents of Fe2+, GSH, MDA and MPO in the ischemic penumbra were determined with spectrophotometric tests. Serum levels of TNF-α and IL-1βwere analyzed using ELISA, and the expressions of GPX4, MMP-9 and occludin around the lesion were detected with Western blotting and immunohistochemistry.
RESULTS:
The rCBF was sharply reduced in the rats in I/R group and SI group after successful insertion of the monofilament. Compared with those in Sham group, the rats in I/R group showed significantly increased neurological deficit scores, cerebral infarction volume, brain water content and Evans blue permeability (P < 0.01), decreased Fe2+ level, increased MDA level, decreased GSH content and GPX4 expression (P < 0.01), increased MPO content and serum levels of TNF-α and IL-1β (P < 0.01), increased MMP-9 expression and lowered occludin expression (P < 0.01). All these changes were significantly ameliorated in rats pretreated with IS prior to I/R injury (P < 0.05 or 0.01).
CONCLUSION
SI preconditioning reduces cerebral I/R injury in rats possibly by improving rCBF, inhibiting ferroptosis and inflammatory response and protecting the BBB.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
Matrix Metalloproteinase 9/metabolism*
;
Soybeans/metabolism*
;
Occludin/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Ferroptosis
;
Blood-Brain Barrier/ultrastructure*
;
Brain Ischemia/metabolism*
;
Cerebral Infarction
;
Reperfusion Injury/metabolism*
;
Isoflavones/therapeutic use*
;
Infarction, Middle Cerebral Artery
2.Porphyromonas gingivalis bacteremia increases the permeability of the blood-brain barrier via the Mfsd2a/Caveolin-1 mediated transcytosis pathway.
Shuang LEI ; Jian LI ; Jingjun YU ; Fulong LI ; Yaping PAN ; Xu CHEN ; Chunliang MA ; Weidong ZHAO ; Xiaolin TANG
International Journal of Oral Science 2023;15(1):3-3
Bacteremia induced by periodontal infection is an important factor for periodontitis to threaten general health. P. gingivalis DNA/virulence factors have been found in the brain tissues from patients with Alzheimer's disease (AD). The blood-brain barrier (BBB) is essential for keeping toxic substances from entering brain tissues. However, the effect of P. gingivalis bacteremia on BBB permeability and its underlying mechanism remains unclear. In the present study, rats were injected by tail vein with P. gingivalis three times a week for eight weeks to induce bacteremia. An in vitro BBB model infected with P. gingivalis was also established. We found that the infiltration of Evans blue dye and Albumin protein deposition in the rat brain tissues were increased in the rat brain tissues with P. gingivalis bacteremia and P. gingivalis could pass through the in vitro BBB model. Caveolae were detected after P. gingivalis infection in BMECs both in vivo and in vitro. Caveolin-1 (Cav-1) expression was enhanced after P. gingivalis infection. Downregulation of Cav-1 rescued P. gingivalis-enhanced BMECs permeability. We further found P. gingivalis-gingipain could be colocalized with Cav-1 and the strong hydrogen bonding between Cav-1 and arg-specific-gingipain (RgpA) were detected. Moreover, P. gingivalis significantly inhibited the major facilitator superfamily domain containing 2a (Mfsd2a) expression. Mfsd2a overexpression reversed P. gingivalis-increased BMECs permeability and Cav-1 expression. These results revealed that Mfsd2a/Cav-1 mediated transcytosis is a key pathway governing BBB BMECs permeability induced by P. gingivalis, which may contribute to P. gingivalis/virulence factors entrance and the subsequent neurological impairments.
Animals
;
Rats
;
Bacteremia/metabolism*
;
Blood-Brain Barrier/microbiology*
;
Caveolin 1/metabolism*
;
Gingipain Cysteine Endopeptidases/metabolism*
;
Permeability
;
Porphyromonas gingivalis/pathogenicity*
;
Transcytosis
;
Virulence Factors/metabolism*
3.Electroacupuncture Improves Blood-Brain Barrier and Hippocampal Neuroinflammation in SAMP8 Mice by Inhibiting HMGB1/TLR4 and RAGE/NADPH Signaling Pathways.
Yuan WANG ; Qiang WANG ; Di LUO ; Pu ZHAO ; Sha-Sha ZHONG ; Biao DAI ; Jia-Jyu WANG ; Yi-Tong WAN ; Zhi-Bin LIU ; Huan YANG
Chinese journal of integrative medicine 2023;29(5):448-458
OBJECTIVE:
To investigate the molecular mechanisms underlying the beneficial effect of electroacupuncture (EA) in experimental models of Alzheimer's disease (AD) in vivo.
METHODS:
Senescence-accelerated mouse prone 8 (SAMP8) mice were used as AD models and received EA at Yingxiang (LI 20, bilateral) and Yintang (GV 29) points for 20 days. For certain experiments, SAMP8 mice were injected intravenously with human fibrin (2 mg). The Morris water maze test was used to assess cognitive and memory abilities. The changes of tight junctions of blood-brain barrier (BBB) in mice were observed by transmission electron microscope. The expressions of fibrin, amyloid- β (Aβ), and ionized calcium-binding adapter molecule 1 (IBa-1) in mouse hippocampus (CA1/CA3) were detected by reverse transcription-quantitative polymerase chain reaction (qRT-PCR), Western blot or immunohistochemical staining. The expression of fibrin in mouse plasma was detected by enzyme-linked immunosorbent assay. The expressions of tight junction proteins zonula occludens-1 and claudin-5 in hippocampus were detected by qRT-PCR and immunofluorescence staining. Apoptosis of hippocampal neurons was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining.
RESULTS:
Fibrin was time-dependently deposited in the hippocampus of SAMP8 mice and this was inhibited by EA treatment (P<0.05 or P<0.01). Furthermore, EA treatment suppressed the accumulation of Aβ in the hippocampus of SAMP8 mice (P<0.01), which was reversed by fibrin injection (P<0.05 or P<0.01). EA improved SAMP8 mice cognitive impairment and BBB permeability (P<0.05 or P<0.01). Moreover, EA decreased reactive oxygen species levels and neuroinflammation in the hippocampus of SAMP8 mice, which was reversed by fibrin injection (P<0.05 or P<0.01). Mechanistically, EA inhibited the promoting effect of fibrin on the high mobility group box protein 1 (HMGB1)/toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE)/nicotinamide adenine dinucleotide phosphate (NADPH) signaling pathways (P<0.01).
CONCLUSION
EA may potentially improve cognitive impairment in AD via inhibition of fibrin/A β deposition and deactivation of the HMGB1/TLR4 and RAGE/NADPH signaling pathways.
Mice
;
Humans
;
Animals
;
NADP/metabolism*
;
Toll-Like Receptor 4
;
HMGB1 Protein/metabolism*
;
Receptor for Advanced Glycation End Products/metabolism*
;
Blood-Brain Barrier/metabolism*
;
Neuroinflammatory Diseases
;
Electroacupuncture
;
Alzheimer Disease/therapy*
;
Hippocampus/metabolism*
;
Amyloid beta-Peptides/metabolism*
4.Endogenous FGF21 attenuates blood-brain barrier disruption in penumbra after delayed recanalization in MCAO rats through FGFR1/PI3K/Akt pathway.
Wen ZHENG ; Wenjun LI ; Yini ZENG ; Hui YUAN ; Heng YANG ; Ru CHEN ; Anding ZHU ; Jinze WU ; Zhi SONG ; Wenguang YAN
Journal of Central South University(Medical Sciences) 2023;48(5):648-662
OBJECTIVES:
Restoration of blood circulation within "time window" is the principal treating goal for treating acute ischemic stroke. Previous studies revealed that delayed recanalization might cause serious ischemia/reperfusion injury. However, plenty of evidences showed delayed recanalization improved neurological outcomes in acute ischemic stroke. This study aims to explore the role of delayed recanalization on blood-brain barrier (BBB) in the penumbra (surrounding ischemic core) and neurological outcomes after middle cerebral artery occlusion (MCAO).
METHODS:
Recanalization was performed on the 3rd day after MCAO. BBB disruption was tested by Western blotting, Evans blue dye, and immunofluorescence staining. Infarct volume and neurological outcomes were evaluated on the 7th day after MCAO. The expression of fibroblast growth factor 21 (FGF21), fibroblast growth factor receptor 1 (FGFR1), phosphatidylinositol-3-kinase (PI3K), and serine/threonine kinase (Akt) in the penumbra were observed by immunofluorescence staining and/or Western blotting.
RESULTS:
The extraversion of Evans blue, IgG, and albumin increased surrounding ischemic core after MCAO, but significantly decreased after recanalization. The expression of Claudin-5, Occludin, and zona occludens 1 (ZO-1) decreased surrounding ischemic core after MCAO, but significantly increased after recanalization. Infarct volume reduced and neurological outcomes improved following recanalization (on the 7th day after MCAO). The expressions of Claudin-5, Occludin, and ZO-1 decreased surrounding ischemic core following MCAO, which were up-regulated corresponding to the increases of FGF21, p-FGFR1, PI3K, and p-Akt after recanalization. Intra-cerebroventricular injection of FGFR1 inhibitor SU5402 down-regulated the expression of PI3K, p-Akt, Occludin, Claudin-5, and ZO-1 in the penumbra, which weakened the beneficial effects of recanalization on neurological outcomes after MCAO.
CONCLUSIONS
Delayed recanalization on the 3rd day after MCAO increases endogenous FGF21 in the penumbra and activates FGFR1/PI3K/Akt pathway, which attenuates BBB disruption in the penumbra and improves neurobehavior in MCAO rats.
Animals
;
Rats
;
Blood-Brain Barrier/metabolism*
;
Brain Ischemia
;
Claudin-5/metabolism*
;
Infarction, Middle Cerebral Artery/metabolism*
;
Ischemic Stroke/metabolism*
;
Occludin/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rats, Sprague-Dawley
;
Receptor, Fibroblast Growth Factor, Type 1/metabolism*
;
Reperfusion Injury/metabolism*
5.Diethylhexyl phthalate induces anxiety-like behavior and learning and memory impairment in mice probably by damaging blood-brain barrier.
Fan LI ; Yan Yan ZHU ; Xiao Ming SUN ; Hui Juan HU ; Miao Miao ZHOU ; Yi Xue BAI ; Hao HU
Journal of Southern Medical University 2022;42(8):1237-1243
OBJECTIVE:
To investigate the effects of diethylhexyl phthalate (DEHP) exposure on anxiety-like behaviors and learning and memory ability in mice and explore the underlying mechanism.
METHODS:
Forty male ICR mice were randomized equally into control group (0 mg/kg) and 10, 50 and 100 mg/kg DEHP exposure groups, in which the mice were exposed to DEHP at the indicated doses by gavage for 4 weeks. After the treatments, the mice were assessed for behavioral changes using open filed test, elevated plus-maze and Morris water maze test. Brain tissues were collected from the mice for determination of malondialdehyde (MDA) content, pathologies and expressions of ZO-1 and occludin in the hippocampus.
RESULTS:
Compared with the control group, the mice with DEHP exposure for 4 weeks exhibited no significant body weight change (P>0.05) but presented with obvious behavioral changes, manifested by reduced movement distance (P < 0.05) and time spent in the center of the open field (P < 0.05), reduced movement distance (P < 0.05) and time spent in the open arm of the elevated maze (P < 0.05), significantly increased latency of searching for the platform (P < 0.05), and decreased frequency of crossing the platform (P < 0.05). HE staining showed obvious vertebral cell death in the hippocampal CA1 to CA3 regions of the mice with DEHP exposure. The exposed mice showed significantly increased MDA content and decreased expressions of ZO-1 and occludin at both the mRNA and protein levels in the hippocampus (P < 0.05 or 0.01). Multivariate linear regression analysis suggested a close correlation between anxiety-like behaviors and learning and memory abilities in DEHP-exposed mice.
CONCLUSION
DEHP exposure may cause damages of the blood-brain barrier and the pyramidal cells in the hippocampus of mice, thereby inducing anxiety-like behaviors and learning and memory impairment.
Animals
;
Anxiety/chemically induced*
;
Blood-Brain Barrier/metabolism*
;
Diethylhexyl Phthalate/toxicity*
;
Male
;
Maze Learning
;
Mice
;
Mice, Inbred ICR
;
Occludin/pharmacology*
6.The destructive role of soluble Robo4 secreted by the M1-polarized-microglia during cerebral ischemia-reperfusion in blood-brain barrier integrity.
Jin-Long HUANG ; Chen LI ; Liang-Liang YANG ; Yang GAO ; Pu-Yuan ZHAO ; Zhi-Gang YANG
Acta Physiologica Sinica 2022;74(4):513-524
This project was aimed to investigate the role and the underlying mechanism of microglia polarization on blood-brain barrier (BBB) during cerebral ischemia-reperfusion. After construction of the mouse model of cerebral ischemia-reperfusion, upregulated IL-6 and TNF-α in peripheral blood and increased IL-6 and iNOS in ischemia tissues were confirmed. The supernatant expression of TNF-α and IL-6, as well as IL-6, iNOS and CD86 mRNA, was significantly increased in the of Bv-2 cells after oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in vitro. For further understanding the expression pattern of RNAs, the next-generation RNA sequencing was performed and upregulation of Robo4 (roundabout guidance receptor 4) was found both in M1-polarized and OGD/R treated Bv-2 cells, which was also confirmed by RT-qPCR. Extracellular soluble Robo4 (sRobo4) protein also increased in the supernatant of M1-polarized and OGD/R treated Bv-2 cells. Treating bEND3 cells with the Robo4 recombinant protein, M1-polarized Bv-2 cell supernatant or OGD/R Bv-2 cell supernatant decreased trans-endothelial electrical resistance (TEER), suggesting the injury of BBB. In addition, Robo4 was also highly expressed in the serum of patients who experienced acute ischemia stroke and mechanical thrombectomy operation. All the results suggest that increased secretion of Robo4 by M1-polarized-microglia during cerebral ischemia-reperfusion is most likely one of the causes of BBB injury, and Robo4 may be one of the therapeutic targets for BBB functional protection.
Animals
;
Blood-Brain Barrier/metabolism*
;
Brain Ischemia/drug therapy*
;
Glucose/metabolism*
;
Interleukin-6/metabolism*
;
Mice
;
Microglia/metabolism*
;
Oxygen/metabolism*
;
Receptors, Cell Surface/metabolism*
;
Reperfusion
;
Reperfusion Injury/drug therapy*
;
Tumor Necrosis Factor-alpha/metabolism*
7.Protection of salidroside on endothelial cell barrier in cerebral ischemia-reperfusion model rats.
Wen-Ting SONG ; Hui CAO ; Ye-Hao ZHANG ; Xiao-Yu ZHENG ; Jian-Xun LIU
China Journal of Chinese Materia Medica 2022;47(19):5284-5291
This study aims to observe the therapeutic effect of salidroside on cerebral ischemia-reperfusion(I/R) model rats, and to specifically explore the protection of salidroside on endothelial cell barrier after I/R and the mechanism. In the experiment, SD rats were randomized into sham group, model group, and high-, medium-, and low-dose(10, 5, and 2.5 mg·kg~(-1)) salidroside groups. The suture method was used to induce I/R in rats. The infarct area, neurobehavioral evaluation, and brain water content were used to evaluate the efficacy of salidroside. As for the experiment on the mechanism, high-dose and low-dose salidroside groups were designed. The pathological morphology was observed based on hematoxylin and eosin(HE) staining, and ultrastructure of vascular endothelial cells based on transmission electron microscopy. The content of nitric oxide(NO) in serum, four indexes of blood coagulation, and the content of von Willebrand factor(vWF) in plasma were measured. Western blot(WB) and immunofluorescence(IF) were employed to determine the expression of tight junction proteins(ZO-1, occluding, and claudin-1) and matrix metalloproteinase 9(MMP-9) in the cortex. The results showed that the model group had obvious neurological deficit, obvious infarct in the right brain tissue, and significant increase in water content in brain tissue compared with the sham group. Compared with the model group, high-dose and low-dose salidroside groups showed decrease in neurobehavioral score, and the high-, medium-, and low-dose salidroside groups demonstrated obviously small infarct area and significant decrease in water content in brain tissue. The results of HE staining and transmission electron microscopy showed that rats had necrosis of neurons, damage of original physiological structure of endothelial cells, and disintegration of the tight junction between endothelial cells after I/R compared with the sham group. Compared with the model group, the high-dose and low-dose salidroside groups showed alleviation of neuron injury and intact physiological structure of endothelial cells. The model group had significantly lower serum level of NO, significantly higher plasma levels of vWF and fibrinogen(FIB), and significantly shorter thrombin time(TT) and prothrombin time(PT) than the sham group. Compared with model group, the high-dose and low-dose salidroside groups increased the serum content of NO in serum, decreased the plasma levels of FIB and vWF, and significantly prolonged TT and PT. WB and IF results showed that the model group had significantly lower levels of ZO-1, occluding, and claudin-1 among endothelial cells and significantly higher level of MMP-9 than the sham group. Compared with the model group, high-dose and low-dose salidroside significantly increased the levels of ZO-1, occluding, and claudin-1 in the cortex. The above experimental results show that salidroside has clear therapeutic effect on I/R rats and protects the brain. To be specific, it alleviates the damage of endothelial cells by increasing NO synthesis in endothelial cells, inhibiting coagulation reaction and MMP-9 expression, up-regulating the expression of ZO-1, occludin, and claudin-1, thereby protecting the brain.
Animals
;
Rats
;
Matrix Metalloproteinase 9/metabolism*
;
Endothelial Cells/metabolism*
;
Reperfusion Injury/metabolism*
;
Blood-Brain Barrier
;
Claudin-1/therapeutic use*
;
von Willebrand Factor/therapeutic use*
;
Rats, Sprague-Dawley
;
Brain Ischemia/metabolism*
;
Cerebral Infarction
;
Reperfusion
;
Water/metabolism*
8.HMGB1 from Astrocytes Promotes EAE by Influencing the Immune Cell Infiltration-Associated Functions of BMECs in Mice.
Junyu SHI ; Yifan XIAO ; Na ZHANG ; Mengya JIAO ; Xuhuan TANG ; Chan DAI ; Chenchen WANG ; Yong XU ; Zheng TAN ; Feili GONG ; Fang ZHENG
Neuroscience Bulletin 2022;38(11):1303-1314
High mobility group box 1 (HMGB1) has been reported to play an important role in experimental autoimmune encephalomyelitis (EAE). Astrocytes are important components of neurovascular units and tightly appose the endothelial cells of microvessels by their perivascular endfeet and directly regulate the functions of the blood-brain barrier. Astrocytes express more HMGB1 during EAE while the exact roles of astrocytic HMGB1 in EAE have not been well elucidated. Here, using conditional-knockout mice, we found that astrocytic HMGB1 depletion decreased morbidity, delayed the onset time, and reduced the disease score and demyelination of EAE. Meanwhile, there were fewer immune cells, especially pathogenic T cells infiltration in the central nervous system of astrocytic HMGB1 conditional-knockout EAE mice, accompanied by up-regulated expression of the tight-junction protein Claudin5 and down-regulated expression of the cell adhesion molecules ICAM1 and VCAM1 in vivo. In vitro, HMGB1 released from astrocytes decreased Claudin5 while increased ICAM1 and VCAM1 expressed by brain microvascular endothelial cells (BMECs) through TLR4 or RAGE. Taken together, our results demonstrate that HMGB1 derived from astrocytes aggravates EAE by directly influencing the immune cell infiltration-associated functions of BMECs.
Mice
;
Animals
;
Encephalomyelitis, Autoimmune, Experimental/metabolism*
;
Astrocytes/metabolism*
;
HMGB1 Protein/metabolism*
;
Endothelial Cells/metabolism*
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Blood-Brain Barrier/metabolism*
9.Histones of Neutrophil Extracellular Traps Induce CD11b Expression in Brain Pericytes Via Dectin-1 after Traumatic Brain Injury.
Yang-Wuyue LIU ; Jingyu ZHANG ; Wanda BI ; Mi ZHOU ; Jiabo LI ; Tiantian XIONG ; Nan YANG ; Li ZHAO ; Xing CHEN ; Yuanguo ZHOU ; Wenhui HE ; Teng YANG ; Hao WANG ; Lunshan XU ; Shuang-Shuang DAI
Neuroscience Bulletin 2022;38(10):1199-1214
The brain pericyte is a unique and indispensable part of the blood-brain barrier (BBB), and contributes to several pathological processes in traumatic brain injury (TBI). However, the cellular and molecular mechanisms by which pericytes are regulated in the damaged brain are largely unknown. Here, we show that the formation of neutrophil extracellular traps (NETs) induces the appearance of CD11b+ pericytes after TBI. These CD11b+ pericyte subsets are characterized by increased permeability and pro-inflammatory profiles compared to CD11b- pericytes. Moreover, histones from NETs by Dectin-1 facilitate CD11b induction in brain pericytes in PKC-c-Jun dependent manner, resulting in neuroinflammation and BBB dysfunction after TBI. These data indicate that neutrophil-NET-pericyte and histone-Dectin-1-CD11b are possible mechanisms for the activation and dysfunction of pericytes. Targeting NETs formation and Dectin-1 are promising means of treating TBI.
Blood-Brain Barrier/metabolism*
;
Brain/pathology*
;
Brain Injuries, Traumatic/metabolism*
;
Extracellular Traps/metabolism*
;
Histones
;
Humans
;
Lectins, C-Type
;
Pericytes/pathology*
10.Effects of on behavior and blood-brain barrier in Alzheimer's disease mice.
Dapeng ZHAO ; Yunwei LU ; Guran YU
Journal of Zhejiang University. Medical sciences 2021;50(5):553-560
To investigate the effects of on behavior and blood brain barrier (BBB) in Alzheimer's disease mice. Thirty-eight 4-month-old APP/PS1 double transgenic mice were randomly divided into three groups: model group, low-dose group and high-dose group. Saline, and 12 g·kg·d were given to each group by continuous gavage once a day for respectively. The changes in activities of daily live and fear conditioning memory behavior of mice were examined by nesting behavior test and fear conditioning test, respectively. The β-amyloid protein (Aβ) depositions in cortex and hippocampal CA1 area of mice were detected by thioflavin T staining. The CD34 and activities fibrinogen (Fib) immunofluorescence double staining were used to determine the vascular endothelial integrity and BBB exudation. Compared with model mice, activities of daily live were significantly improved in low-dose and high-dose groups (both <0.01), the fear memory ability was significantly increased in high-dose group (<0.01). The amount of Aβ deposition in cortex and hippocampal CA1 decreased significantly in high-dose group, the area ratio decreased significantly; the area ratio of Aβ deposition in hippocampal CA1 region in low-dose group also decreased (all <0.05). The proportions of CD34 positive area of cortex in low and high dose groups increased, the percentage of fibrinogen positive area decreased (all <0.05). The proportion of CD34 positive area in hippocampal CA1 region in high-dose group was significantly increased, the percentage of fibrinogen positive area decreased significantly (both <0.05). especially high-dose can improve the activities of daily live and fear conditioning memory function of APP/PS1 mice, reduce the deposition of Aβ in brain. The mechanism may be related to the reduction of BBB permeability and the protection of the integrity of BBB.
Alzheimer Disease
;
Amyloid beta-Protein Precursor
;
Animals
;
Blood-Brain Barrier/metabolism*
;
Disease Models, Animal
;
Hippocampus/metabolism*
;
Mice
;
Mice, Inbred C57BL
;
Mice, Transgenic

Result Analysis
Print
Save
E-mail