1.Study on effect of extract from Tibetan medicine Urtica hyperborean on anti-prostatic hyperplasia.
Ri-Na SU ; Rong-Rui WEI ; Wei-Zao LUO ; Ji-Xiao ZHU ; Lu WANG ; Guo-Yue ZHONG
China Journal of Chinese Materia Medica 2019;44(9):1953-1959
In this study,mouse models of benign prostatic hyperplasia induced by subcutaneous injection of testosterone propionate was used to investigate the therapeutic effect and mechanism of Urtica hyperborean( UW) extracts on prostate hyperplasia in mice. The effects of UW extracts on prostate index,serum epidermal growth factor( EGF) and dihydrotestosterone( DHT) in model mice were observed,and the EGF and anti-apoptotic factor( Bcl-2) mRNA expression levels were detected as well as pathological changes in prostate tissue. The results showed that the ethyl acetate extraction and alcohol soluble fraction of the UW could significantly reduce the prostate index,reduce the serum DHT and EGF levels( P<0. 01),and significantly decrease the EGF and Bcl-2 mRNA expression( P<0. 01),significantly improved the morphological structure of prostate tissue. The above results confirmed that ethyl acetate extract and alcohol-soluble parts of UW have a good preventive effect on mice prostatic hyperplasia model,and its mechanism may be to reduce androgen levels by regulating polypeptide growth factors and/or inhibiting cell hyperproliferation and promoting apoptosis. This study laid the foundation for the further research on UW.
Animals
;
Dihydrotestosterone
;
blood
;
Epidermal Growth Factor
;
blood
;
Male
;
Medicine, Tibetan Traditional
;
Mice
;
Plant Extracts
;
pharmacology
;
Prostatic Hyperplasia
;
chemically induced
;
drug therapy
;
Proto-Oncogene Proteins c-bcl-2
;
metabolism
;
Testosterone Propionate
;
Urticaceae
;
chemistry
2.Mechanism of Cinnamomi Ramulus improving rat model of intrahepatic cholestasis induced by ANIT by regulating FXR pathway.
Xin CAI ; Ren-Wu QIN ; Yu-Qing LIU ; Yao WANG ; Lei LUO ; Fan YANG
China Journal of Chinese Materia Medica 2019;44(12):2594-2599
To study the mechanism and action of Cinnamomi Ramulus in ameliorating intrahepatic cholestasis induced by α-isothiocyanate( ANIT) in rats by regulating FXR pathway. Forty SD rats were randomly divided into normal group,model group,positive control( ursodeoxycholic acid) group( 60 mg·kg~(-1)),Cinnamomi Ramulus treatment( 60 mg·kg~(-1)·d~(-1)) group,and Cinnamomi Ramulus treatment( 20 mg·kg~(-1)·d~(-1)) group,with 8 rats in each group. Except for the normal control group,the other groups were intragastrically administered with the corresponding concentrations of continuous aqueous solution( 0. 005 m L·g~(-1)),once a day,for 7 days.Except for the normal group,the other groups were treated with ANIT( 100 mg·kg~(-1)),once a day,for 3 days. Blood was taken from the abdominal aorta 24 hours after the last administration,and serum alanine aminotransferase( ALT),aspartate aminotransferase( AST),total bilirubin( TBi L),and total bile acid( TBA) were measured. 1. 5-2 cm of rat liver tissue was taken. After fixation with10% formaldehyde,paraffin-embedded sections were taken,HE staining was performed,and immunohistochemistry( IHC) was used to analyze the expression of FXR. RNA and protein were extracted from rat liver tissue to detect FXR mRNA expression,as well as bile acid synthesis and detoxification,transport related SHP,UGT2 B4,BSEP protein expressions at downstream of FXR. Compared with the normal group,serum ALT,AST,TBi L,and TBA levels were elevated in the model group( P<0. 01),liver damage was severe,FXR protein's optical density decreased,FXR mRNA expression decreased,and SHP,UGT2 B4,BSEP protein expressions were decreased( P<0. 05,P<0. 01). Compared with the model group,the drug group could reduce serum ALT,AST,TB,TBA levels to different degrees( P<0. 05,P<0. 01),alleviate liver tissue damage,increase the optical density of FXR protein,and promote the expressions of FXR mRNA and FXR,SHP,BSEP and UGT2 B4 proteins( P<0. 05,P<0. 01). Cinnamomi Ramulus can alleviate ANIT-induced intrahepatic cholestasis,and reduce hepatocyte injury and serum ALT,AST,TBi L and TBA levels. The mechanism may be through FXR-SHP,FXR-UGT2 B4,FXR-BSEP signaling pathways. Therefore,in the pathogenesis of intrahepatic cholestasis,we can try to further explore in alleviating intrahepatic cholestasis with Cinnamomi Ramulus,so as to provide effective drugs for clinical treatment of intrahepatic cholestasis.
Alanine Transaminase
;
blood
;
Animals
;
Aspartate Aminotransferases
;
blood
;
Bile Acids and Salts
;
blood
;
Bilirubin
;
blood
;
Cholestasis, Intrahepatic
;
chemically induced
;
drug therapy
;
Cinnamomum
;
chemistry
;
Isothiocyanates
;
Liver
;
Plant Extracts
;
pharmacology
;
RNA-Binding Proteins
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
3.Determination of plasma protein binding rates of nine compounds of Inula cappa extraction based on method of equilibrium dialysis.
Hong-Song BAO ; Jing-Yu HOU ; He-Jia HU ; Yue-Ting LI ; Lin ZHENG ; Yong HUANG ; Guang-Cheng WANG ; Meng ZHOU ; Yan-Yu LAN ; Zi-Peng GONG
China Journal of Chinese Materia Medica 2019;44(7):1475-1484
To determine the plasma protein binding rate of the nine compounds in Inula cappa extraction by the method of equilibrium dialysis. The proteins in plasma samples were precipitated by methanol, and the ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) was developed for determination of the concentrations of the nine active compounds, namely chlorogenic acid, scopolin, neochlorogenic acid, cryptochlorogenic acid, 1,3-O-dicaffeoylquinic acid, galuteolin, 3,4-O-dicaffeoylquinic acid, 3,5-O-dicaffeoylquinic acid, 4,5-O-dicaffeoylquinic acid, with the internal standard of puerarin. We found that all components have a good linearity(r≥0.999), and accuracy, precision, extraction recovery and stability conformed to the requirements of determination, without endogenous compounds disturbing within the range of optimum concentration. This suggested that the method was stable and reliable, and could be used for the determination of the plasma protein binding rates of the nine active compounds in rat and human plasma of I. cappa. The plasma protein binding rates of the nine active compounds in rat and human plasma respectively were(41.07±0.046)%-(94.95±0.008)%, and(37.66±0.043)%-(97.46±0.013)%. According to the results, there were differences in the plasma protein binding rates of the nine compounds in I. cappa extraction between rat and human.
Animals
;
Blood Proteins
;
metabolism
;
Chromatography, High Pressure Liquid
;
Humans
;
Inula
;
chemistry
;
Phytochemicals
;
metabolism
;
Plant Extracts
;
metabolism
;
Protein Binding
;
Rats
;
Reproducibility of Results
;
Tandem Mass Spectrometry
4.Antihypertensive effect and mechanism of Dendrobium officinale flos on high-blood pressure rats induced by high glucose and high fat compound alcohol.
Kai-Lun LIANG ; Ping FANG ; Qiu-Qiu SHI ; Jie SU ; Bo LI ; Su-Hong CHEN ; Gui-Yuan LV
China Journal of Chinese Materia Medica 2018;43(1):147-153
This study aimed to investigate the antihypertensive effect and possible mechanism of Dendrobium officinale flos on hypertensive rats induced by high glucose and high fat compound alcohol. The hypertensive models were successfully made by high-glucose and high-fat diet, with gradient drinking for 4 weeks, and then divided into model control group, valsartan (5.7 mg·kg⁻¹) positive control group and D. officinale flos groups (3,1 g·kg⁻¹). After 6 weeks of treatment, the blood pressure of rats was measured regularly. After the last administration, endothelin-1 (ET-1), thromboxane B₂ (TXB₂), prostacyclin (PGI₂) and nitric oxide (NO) were tested. Endothelial nitric oxide synthase (eNOS) expression and lesion status in thoracic aorta were detected. The vascular endothelium dependent dilation of the thoracic aorta was detected by the isolated vascular loop tension test. The results showed that D. officinale flos could significantly reduce systolic blood pressure and mean arterial pressure in hypertensive rats, inhibit the thickening of thoracic aorta and the loss of endothelial cells, reduce plasma content of ET-1 and TXB₂, and increase the content of PGI₂ and NO. After long-term administration, vascular endothelium dependent dilation of the thoracic aorta was significantly increased, and could be blocked by the eNOS inhibitor (L-NAME) and increase the expression of eNOS. Therefore, D. officinale flos has an obvious antihypertensive effect on high glucose and high fat compound alcohol-induced hypertensive rats. Its mechanism may be correlated with the improvement of vascular diastolic function by protecting vascular endothelial cells, and finally resist hypertension.
Animals
;
Antihypertensive Agents
;
pharmacology
;
Blood Pressure
;
Dendrobium
;
chemistry
;
Diet, High-Fat
;
Drugs, Chinese Herbal
;
pharmacology
;
Endothelin-1
;
blood
;
Endothelium, Vascular
;
drug effects
;
Epoprostenol
;
blood
;
Glucose
;
Hypertension
;
chemically induced
;
drug therapy
;
Nitric Oxide
;
blood
;
Nitric Oxide Synthase Type III
;
metabolism
;
Rats
;
T-Box Domain Proteins
;
blood
;
Vasodilation
5.Global gene expression analysis in liver of db/db mice treated with catalpol.
Jing LIU ; He-Ran ZHANG ; Yan-Bao HOU ; Xiao-Long JING ; Xin-Yi SONG ; Xiu-Ping SHEN
Chinese Journal of Natural Medicines (English Ed.) 2018;16(8):590-598
Catalpol, a major bioactive component from Rehmannia glutinosa, which has been used to treat diabetes. The present study was designed to elucidate the anti-diabetic effect and mechanism of action for catalpol in db/db mice. The db/db mice were randomly divided into six groups (10/group) according to their blood glucose levels: db/db control, metformin (positive control), and four dose levels of catalpol treatment (25, 50, 100, and 200 mg·kg), and 10 db/m mice were used as the normal control. All the groups were administered orally for 8 weeks. The levels of fasting blood glucose (FBG), random blood glucose (RBG), glucose tolerance, insulin tolerance, and glycated serum protein (GSP) and the globe gene expression in liver tissues were analyzed. Our results showed that catalpol treatment obviously reduced water intake and food intake in a dose-dependent manner. Catalpol treatment also remarkably reduce fasting blood glucose (FBG) and random blood glucose (RBG) in a dose-dependent manner. The RBG-lowering effect of catalpol was better than that of metformin. Furthermore, catalpol significantly improved glucose tolerance and insulin tolerance via increasing insulin sensitivity. Catalpol treatment significantly decreased GSP level. The comparisons of gene expression in liver tissues among normal control mice, db/db mice and catalpol treated mice (200 and 100 mg·kg) indicated that there were significant increases in the expressions of 287 genes, whichwere mainly involved in lipid metabolism, response to stress, energy metabolism, and cellular processes, and significant decreases in the expressions of 520 genes, which were mainly involved in cell growth, death, immune system, and response to stress. Four genes expressed differentially were linked to glucose metabolism or insulin signaling pathways, including Irs1 (insulin receptor substrate 1), Idh2 (isocitrate dehydrogenase 2 (NADP), mitochondrial), G6pd2 (glucose-6-phosphate dehydrogenase 2), and SOCS3 (suppressor of cytokine signaling 3). In conclusion, catalpol ecerted significant hypoglycemic effect and remarkable therapeutic effect in db/db mice via modulating various gene expressions.
Animals
;
Blood Glucose
;
metabolism
;
Diabetes Mellitus, Experimental
;
drug therapy
;
genetics
;
metabolism
;
Disease Models, Animal
;
Dose-Response Relationship, Drug
;
Drugs, Chinese Herbal
;
administration & dosage
;
analysis
;
Gene Expression
;
drug effects
;
Glucosephosphate Dehydrogenase
;
genetics
;
metabolism
;
Humans
;
Hypoglycemic Agents
;
administration & dosage
;
Insulin
;
metabolism
;
Insulin Receptor Substrate Proteins
;
genetics
;
metabolism
;
Iridoid Glucosides
;
administration & dosage
;
analysis
;
Isocitrate Dehydrogenase
;
genetics
;
metabolism
;
Liver
;
drug effects
;
metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Rehmannia
;
chemistry
;
Suppressor of Cytokine Signaling 3 Protein
;
genetics
;
metabolism
6.Taxus chinensis ameliorates diabetic nephropathy through down-regulating TGF-β1/Smad pathway.
Hong-Bo WENG ; Wen-Ke HAN ; Yan-Wen XIONG ; Zhou-Hui JIN ; Zhen LAN ; Cheng LIU ; Xue-Mei ZHANG ; Wen PENG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(2):90-96
Diabetic nephropathy (DN) is one of the common microvascular complications of diabetes mellitus. Renal fibrosis is closely related to the deterioration of renal function. The present study aimed to investigate protective effect of Taxus chinensis on high-fat diet/streptozotocin-induced DN in rats and explore the underlying mechanism of action. The rat DN model was established via feeding high fat diet for 4 weeks and subsequently injecting streptozotocin (30 mg·kg body weight) intraperitoneally. The rats with blood glucose levels higher than 16.8 mmol·L were selected for experiments. The DN rats were treated with Taxus chinensis orally (0.32, 0.64, and 1.28 g·kg) once a day for 8 weeks. Taxus chinensis significantly improved the renal damage, which was indicated by the decreases in 24-h urinary albumin excretion rate, blood serum creatinine, and blood urea nitrogen. Histopathological examination confirmed the protective effect of Taxus chinensis. The thickness of glomerular basement membrane was reduced, and proliferation of mesangial cells and podocytes cells and increase in mesangial matrix were attenuated. Further experiments showed that Taxus chinensis treatment down-regulated the expression of TGF-β1 and α-SMA, inhibited phosphorylation of Smad2 and Smad3. These results demonstrated that Taxus chinensis alleviated renal injuries in DN rats, which may be associated with suppressing TGF-β1/Smad signaling pathway.
Albumins
;
Animals
;
Blood Glucose
;
metabolism
;
Creatinine
;
blood
;
Diabetic Nephropathies
;
blood
;
drug therapy
;
genetics
;
urine
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Kidney
;
drug effects
;
metabolism
;
Male
;
Phosphorylation
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
drug effects
;
Smad Proteins
;
genetics
;
metabolism
;
Taxus
;
chemistry
;
Transforming Growth Factor beta1
;
metabolism
7.Vascular protective effects of aqueous extracts of Tribulus terrestris on hypertensive endothelial injury.
Yue-Hua JIANG ; Jin-Hao GUO ; Sai WU ; Chuan-Hua YANG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(8):606-614
Angiotensin II (Ang II) is involved in endothelium injury during the development of hypertension. Tribulus terrestris (TT) is used to treat hypertension, arteriosclerosis, and post-stroke syndrome in China. The present study aimed to determine the effects of aqueous TT extracts on endothelial injury in spontaneously hypertensive rats (SHRs) and its protective effects against Ang II-induced injury in human umbilical vein endothelial cells (HUVECs). SHRs were administered intragastrically with TT (17.2 or 8.6 g·kg·d) for 6 weeks, using valsartan (13.5 mg·kg·d) as positive control. Blood pressure, heart rate, endothelial morphology of the thoracic aorta, serum levels of Ang II, endothelin-1 (ET-1), superoxide dismutase (SOD) and malonaldehyde (MDA) were measured. The endothelial injury of HUVECs was induced by 2 × 10 mol·L Ang II. Cell Apoptosisapoptosis, intracellular reactive oxygen species (ROS) was assessed. Endothelial nitric oxide synthase (eNOS), ET-1, SOD, and MDA in the cell culture supernatant and cell migration were assayed. The expression of hypertension-linked genes and proteins were analyzed. TT decreased systolic pressure, diastolic pressure, mean arterial pressure and heart rate, improved endothelial integrity of thoracic aorta, and decreased serum leptin, Ang II, ET-1, NPY, and Hcy, while increased NO in SHRs. TT suppressed Ang II-induced HUVEC proliferation and apoptosis and prolonged the survival, and increased cell migration. TT regulated the ROS, and decreased mRNA expression of Akt1, JAK2, PI3Kα, Erk2, FAK, and NF-κB p65 and protein expression of Erk2, FAK, and NF-κB p65. In conclusion, TT demonstrated anti-hypertensive and endothelial protective effects by regulating Erk2, FAK and NF-κB p65.
Angiotensin II
;
metabolism
;
Animals
;
Antihypertensive Agents
;
administration & dosage
;
Apoptosis
;
drug effects
;
Blood Pressure
;
drug effects
;
Endothelium, Vascular
;
drug effects
;
metabolism
;
Human Umbilical Vein Endothelial Cells
;
drug effects
;
Humans
;
Hypertension
;
drug therapy
;
genetics
;
metabolism
;
physiopathology
;
Male
;
NF-kappa B
;
genetics
;
metabolism
;
Nitric Oxide Synthase Type III
;
genetics
;
metabolism
;
Oxidative Stress
;
drug effects
;
Plant Extracts
;
administration & dosage
;
Proto-Oncogene Proteins c-akt
;
genetics
;
metabolism
;
Rats
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Reactive Oxygen Species
;
metabolism
;
Tribulus
;
chemistry
8.Moutan Cortex and Paeoniae Radix Rubra reverse high-fat-diet-induced metabolic disorder and restore gut microbiota homeostasis.
Ling-Jun ZHONG ; Zhi-Sheng XIE ; Hua YANG ; Ping LI ; Xiao-Jun XU
Chinese Journal of Natural Medicines (English Ed.) 2017;15(3):210-219
The present study was designed to investigate the therapeutic effcts of Moutan Cortex (CM, root bark of Paeonia suffruticosa Andr) and Paeoniae Radix Rubra (PR, root of Paeonia veitchii Lynch) on metabolic disorders, focusing on the infuence of CM and PR on the obesity-related gut microbiota homeostasis. The diet-induced obese (DIO) mouse model was used to test the therapeutic effects of CM and PR. The mice were orally administered with CM and PR for 6 weeks, and oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were performed to evaluate the insulin sensitivity of the mice. Sterol-regulatory element binding proteins (SREBPs) and their target genes were measured by quantitative RT-PCR. High-throughput 16S ribosomal RNA (16S rRNA) gene sequencing technology was used to determine the composition of gut microbiota, and the metabolites in serum were analyzed by GC-MS. Our results indicated that CM and PR combination alleviated obese and insulin resistance in the DIO mice, leading to increased glucose uptake and gene expression in muscle and liver, and down-regulated SREBPs and their target genes in liver. Interesting, neither the CM-PR extracts, nor the major components of CM and PR did not affect SREBPs activity in cultured cells. Meanwhile, CM and PR significantly modulated the gut microbiota of the high-fat diet (HFD) treated mice, similar to metformin, and CM-PR reversed the overall microbiota composition similar to the normal chow diet (NCD) treated mice. In conclusion, our results provide novel mechanisms of action for the effects of CM and PR in treating DIO-induced dysregulation of sugar and lipid metabolism.
Animals
;
Blood Glucose
;
metabolism
;
Diet, High-Fat
;
adverse effects
;
Drugs, Chinese Herbal
;
administration & dosage
;
Gastrointestinal Microbiome
;
drug effects
;
Homeostasis
;
drug effects
;
Humans
;
Insulin
;
metabolism
;
Male
;
Metabolic Diseases
;
drug therapy
;
genetics
;
metabolism
;
microbiology
;
Mice
;
Mice, Inbred C57BL
;
Paeonia
;
chemistry
;
Sterol Regulatory Element Binding Proteins
;
genetics
;
metabolism
9.Association of CETP gene I405V/D442G polymorphisms with cerebral hemorrhage and serum lipid profile in ethnic Han population from Changsha.
Xiaoyu XU ; Xiaoyu ZHENG ; Fuping JIE ; Yi ZENG ; Le ZHANG
Chinese Journal of Medical Genetics 2016;33(1):91-96
OBJECTIVETo assess the association between I405V and D442G polymorphisms of the CETP gene with cerebral hemorrhage (CH) and a related lipid profile among ethnic Han Chinese from Changsha.
METHODSA case-control study was carried out, which enrolled 170 cerebral hemorrhage patients and 191 ethnicity-, age- and sex-matched health controls. Polymerase chain reaction-restricted fragments length polymorphism (PCR-RFLP) was used to determine the polymorphisms. Lipid profile was determined by means of oxidase method. Statistic analyses were performed with SPSS 16.0.
RESULTSNo significant difference was found in the CETP gene I405V and D442G genotypes and allelic distribution between the CH patients and controls (P>0.05). There was no association between CETP gene I405V polymorphism and lipid profile in both groups (P>0.05). CH patients with DG genotype of the D442G polymorphism had higher TC and low density lipoprotein-cholesterol (LDL-C) levels than those with a DD genotype(P<0.05).
CONCLUSIONCETP gene I405V polymorphism may not be associated with CH among ethnic Han Chinese from Changsha, while the D442G polymorphism of the CETP gene may be associated with TC and LDL levels in the same population.
Adult ; Aged ; Asian Continental Ancestry Group ; ethnology ; genetics ; Base Sequence ; Case-Control Studies ; Cerebral Hemorrhage ; blood ; ethnology ; genetics ; China ; ethnology ; Cholesterol Ester Transfer Proteins ; genetics ; metabolism ; Cholesterol, HDL ; blood ; Female ; Humans ; Lipids ; blood ; chemistry ; Male ; Middle Aged ; Molecular Sequence Data ; Mutation, Missense ; Polymorphism, Single Nucleotide
10.Pro-angiogenic activity of notoginsenoside R1 in human umbilical vein endothelial cells in vitro and in a chemical-induced blood vessel loss model of zebrafish in vivo.
Bin-Rui YANG ; Si-Jia HONG ; Simon Ming-Yuen LEE ; Wei-Hong CONG ; Jian-Bo WAN ; Zhe-Rui ZHANG ; Qing-Wen ZHANG ; Yi ZHANG ; Yi-Tao WANG ; Zhi-Xiu LIN
Chinese journal of integrative medicine 2016;22(6):420-429
OBJECTIVEThis study aimed at investigating whether notoginsenoside R1 (R1), a unique saponin found in Panax notoginseng could promote angiogenic activity on human umbilical vein endothelial cells (HUVECs) and elucidate their potential molecular mechanisms. In addition, vascular restorative activities of R1 was assessed in a chemically-induced blood vessel loss model in zebrafish.
METHODSThe in vitro angiogenic effect of R1 was compared with other previously reported angiogenic saponins Rg1 and Re. The HUVECs proliferation in the presence of R1 was determined by cell proliferation kit II (XTT) assay. R1, Rg1 and Re-induced HUVECs invasion across polycarbonate membrane was stained with Hoechst-33342 and quantified microscopically. Tube formation assay using matrigelcoated wells was performed to evaluate the pro-angiogenic actions of R1. In order to understand the mechanism underlying the pro-angiogenic effect, various pathway inhibitors such as SU5416, wortmannin (wort) or L-Nω-nitro- L-arginine methyl ester hydrochloride (L-NAME), SH-6 were used to probe the possible involvement of signaling pathway in the R1 mediated HUVECs proliferation. In in vivo assays, zebrafish embryos at 21 hpf were pre-treated with vascular endothelial growth factor (VEGF) receptor kinase inhibitor II (VRI) for 3 h only and subsequently post-treated with R1 for 48 h, respectively. The intersegmental vessels (ISVs) in zebrafish were assessed for the restorative effect of R1 on defective blood vessels.
RESULTSR1 could stimulate the proliferation of HUVECs. In the chemoinvasion assay, R1 significantly increased the number of cross-membrane HUVECs. In addition, R1 markedly enhanced the tube formation ability of HUVECs. The proliferative effects of these saponins on HUVECs were effectively blocked by the addition of SU5416 (a VEGF-KDR/Flk-1 inhibitor). Similarly, pre-treatment with wort [a phosphatidylinositol 3-kinase (PI3K)-kinase inhibitor], L-NAME [an endothelial nitric oxide synthase (eNOS) inhibitor] or SH-6 (an Akt pathway inhibitor) significantly abrogated the R1 induced proliferation of HUVECs. In chemicallyinduced blood vessel loss model in zebrafish, R1 significantly rescue the damaged ISVs.
CONCLUSIONR1, similar to Rg1 and Re, had been showed pro-angiogenic action, possibly via the activation of the VEGF-KDR/Flk-1 and PI3K-Akt-eNOS signaling pathways. Our findings also shed light on intriguing pro-angiogenic effect of R1 under deficient angiogenesis condition in a pharmacologic-induced blood vessels loss model in zebrafish. The present study in vivo and in vitro provided scientific evidence to explain the ethnomedical use of Panax notoginseng in the treatment of cardiovascular diseases, traumatic injuries and wound healing.
Animals ; Blood Vessels ; pathology ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Collagen ; pharmacology ; Disease Models, Animal ; Drug Combinations ; Ginsenosides ; chemistry ; pharmacology ; Human Umbilical Vein Endothelial Cells ; cytology ; drug effects ; enzymology ; physiology ; Humans ; Laminin ; pharmacology ; Neovascularization, Physiologic ; drug effects ; Phosphatidylinositol 3-Kinases ; metabolism ; Protein Kinase Inhibitors ; pharmacology ; Proteoglycans ; pharmacology ; Proto-Oncogene Proteins c-akt ; metabolism ; Vascular Endothelial Growth Factor Receptor-2 ; metabolism ; Zebrafish

Result Analysis
Print
Save
E-mail