1.Salidroside alleviates retinopathy in diabetes rats by inhibiting oxidative stress and immune inflammation through activating PI3K/AKT pathway.
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):404-409
		                        		
		                        			
		                        			Objective To investigate the ameliorative effect of salidroside on diabetes retinopathy (DR) rats and its mechanism. Methods Male SD rats were randomly divided into blank group, model group, low-dose and high-dose salidroside treatment groups. Except for the blank group, other groups were modeled by intraperitoneal injection of streptozotocin. After successful modeling, treatment groups were injected intraperitoneally with [50 mg/(kg.d)] and [100 mg/(kg.d)] salidroside respectively, for 4 weeks; the blank group and model group were injected with corresponding doses of saline. ELISA was used to measure the expression levels of antioxidant-related enzyme activity and inflammatory factors in blood glucose and serum of rats in each group. Retinal tissue lesions were detected by HE staining, and the expression of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule 1 (ICAM-1) in retinal tissues were detected by immunohistochemical staining. Western blot analysis was used to detect the expression of phosphatidylinositol 3 kinase (PI3K) , nuclear factor κB p65 (NF-κB p65), phosphorylated p38 MAPK (p-p38 MAPK), and phosphorylated protein kinase B (p-AKT) proteins. Results Compared with model group, salidroside could significantly reduce blood glucose level and increase body mass in DR rats. The serum levels of superoxide dismutase (SOD) and catalase (CAT) were significantly increased, while the levels of malondialdehyde (MDA), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and IL-1β were reduced. The protein expression of VEGF, ICAM-1, NF-κB p65 and p-p38 MAPK was significantly decreased, while the protein expression of PI3K and p-AKT was increased. Conclusion Salidroside can reduce DR in rats by inhibiting oxidative stress and immune inflammatory response, which may be related to the reduction of abnormal expression of VEGF and ICAM-1 and the activation of PI3K/AKT signaling pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Blood Glucose
		                        			;
		                        		
		                        			Diabetes Mellitus
		                        			;
		                        		
		                        			Inflammation/metabolism*
		                        			;
		                        		
		                        			Intercellular Adhesion Molecule-1/metabolism*
		                        			;
		                        		
		                        			NF-kappa B/metabolism*
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Retinal Diseases
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A/metabolism*
		                        			
		                        		
		                        	
2.Effect of Recombinant Human Thrombopoietin (rhTPO) on Long-term Hematopoietic Recovery in Mice with Acute Radiation Sickness and Relative Mechanism.
Hao LUAN ; Shuang XING ; Jing-Kun YANG ; Ye-Mei WANG ; Xue-Wen ZHANG ; Zi-Zhi QIAO ; Xing SHEN ; Zu-Yin YU
Journal of Experimental Hematology 2023;31(2):546-552
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effect and relative mechanism of Recombinant Human Thrombopoietin (rhTPO) on long-term hematopoietic recovery in mice with acute radiation sickness.
		                        		
		                        			METHODS:
		                        			Mice were intramuscularly injected with rhTPO (100 μg/kg) 2 hours after total body irradiation with 60Co γ-rays (6.5 Gy). Moreover, six months after irradiation, peripheral blood, hematopoietic stem cells (HSC) ratio, competitive transplantation survival rate and chimerization rate, senescence rate of c-kit+ HSC, and p16 and p38 mRNA expression of c-kit+ HSC were detected.
		                        		
		                        			RESULTS:
		                        			Six months after 6.5 Gy γ-ray irradiation, there were no differences in peripheral blood white blood cells, red blood cells, platelets, neutrophils and bone marrow nucleated cells in normal group, irradiated group and rhTPO group (P>0.05). The proportion of hematopoietic stem cells and multipotent progenitor cells in mice of irradiated group was significantly decreased after irradiation (P<0.05), but there was no significant changes in rhTPO group (P>0.05). The counts of CFU-MK and BFU-E in irradiated group were significantly lower than that in normal group, and rhTPO group was higher than that of the irradiated group(P<0.05). The 70 day survival rate of recipient mice in normal group and rhTPO group was 100%, and all mice died in irradiation group. The senescence positive rates of c-kit+ HSC in normal group, irradiation group and rhTPO group were 6.11%, 9.54% and 6.01%, respectively (P<0.01). Compared with the normal group, the p16 and p38 mRNA expression of c-kit+ HSC in the irradiated mice were significantly increased (P<0.01), and it was markedly decreased after rhTPO administration (P<0.01).
		                        		
		                        			CONCLUSION
		                        			The hematopoietic function of mice is still decreased 6 months after 6.5 Gy γ-ray irradiation, suggesting that there may be long-term damage. High-dose administration of rhTPO in the treatment of acute radiation sickness can reduce the senescence of HSC through p38-p16 pathway and improve the long-term damage of hematopoietic function in mice with acute radiation sickness.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Thrombopoietin/metabolism*
		                        			;
		                        		
		                        			Hematopoietic Stem Cells
		                        			;
		                        		
		                        			Blood Platelets
		                        			;
		                        		
		                        			Recombinant Proteins/therapeutic use*
		                        			;
		                        		
		                        			Radiation Injuries
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			
		                        		
		                        	
3.Endogenous FGF21 attenuates blood-brain barrier disruption in penumbra after delayed recanalization in MCAO rats through FGFR1/PI3K/Akt pathway.
Wen ZHENG ; Wenjun LI ; Yini ZENG ; Hui YUAN ; Heng YANG ; Ru CHEN ; Anding ZHU ; Jinze WU ; Zhi SONG ; Wenguang YAN
Journal of Central South University(Medical Sciences) 2023;48(5):648-662
		                        		
		                        			OBJECTIVES:
		                        			Restoration of blood circulation within "time window" is the principal treating goal for treating acute ischemic stroke. Previous studies revealed that delayed recanalization might cause serious ischemia/reperfusion injury. However, plenty of evidences showed delayed recanalization improved neurological outcomes in acute ischemic stroke. This study aims to explore the role of delayed recanalization on blood-brain barrier (BBB) in the penumbra (surrounding ischemic core) and neurological outcomes after middle cerebral artery occlusion (MCAO).
		                        		
		                        			METHODS:
		                        			Recanalization was performed on the 3rd day after MCAO. BBB disruption was tested by Western blotting, Evans blue dye, and immunofluorescence staining. Infarct volume and neurological outcomes were evaluated on the 7th day after MCAO. The expression of fibroblast growth factor 21 (FGF21), fibroblast growth factor receptor 1 (FGFR1), phosphatidylinositol-3-kinase (PI3K), and serine/threonine kinase (Akt) in the penumbra were observed by immunofluorescence staining and/or Western blotting.
		                        		
		                        			RESULTS:
		                        			The extraversion of Evans blue, IgG, and albumin increased surrounding ischemic core after MCAO, but significantly decreased after recanalization. The expression of Claudin-5, Occludin, and zona occludens 1 (ZO-1) decreased surrounding ischemic core after MCAO, but significantly increased after recanalization. Infarct volume reduced and neurological outcomes improved following recanalization (on the 7th day after MCAO). The expressions of Claudin-5, Occludin, and ZO-1 decreased surrounding ischemic core following MCAO, which were up-regulated corresponding to the increases of FGF21, p-FGFR1, PI3K, and p-Akt after recanalization. Intra-cerebroventricular injection of FGFR1 inhibitor SU5402 down-regulated the expression of PI3K, p-Akt, Occludin, Claudin-5, and ZO-1 in the penumbra, which weakened the beneficial effects of recanalization on neurological outcomes after MCAO.
		                        		
		                        			CONCLUSIONS
		                        			Delayed recanalization on the 3rd day after MCAO increases endogenous FGF21 in the penumbra and activates FGFR1/PI3K/Akt pathway, which attenuates BBB disruption in the penumbra and improves neurobehavior in MCAO rats.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Blood-Brain Barrier/metabolism*
		                        			;
		                        		
		                        			Brain Ischemia
		                        			;
		                        		
		                        			Claudin-5/metabolism*
		                        			;
		                        		
		                        			Infarction, Middle Cerebral Artery/metabolism*
		                        			;
		                        		
		                        			Ischemic Stroke/metabolism*
		                        			;
		                        		
		                        			Occludin/metabolism*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Receptor, Fibroblast Growth Factor, Type 1/metabolism*
		                        			;
		                        		
		                        			Reperfusion Injury/metabolism*
		                        			
		                        		
		                        	
4.Effective substances and mechanism of Yishen Guluo Mixture in treatment of chronic glomerulonephritis based on metabolomics and serum pharmacochemistry.
Zhen-Hua BIAN ; Wen-Ming ZHANG ; Jing-Yue TANG ; Qian-Qian FEI ; Min-Min HU ; Xiao-Wei CHEN ; Xiao-Hang YUAN ; Tu-Lin LU
China Journal of Chinese Materia Medica 2023;48(2):492-506
		                        		
		                        			
		                        			This study aimed to investigate the effective substances and mechanism of Yishen Guluo Mixture in the treatment of chronic glomerulonephritis(CGN) based on metabolomics and serum pharmacochemistry. The rat model of CGN was induced by cationic bovine serum albumin(C-BSA). After intragastric administration of Yishen Guluo Mixture, the biochemical indexes related to renal function(24-hour urinary protein, serum urea nitrogen, and creatinine) were determined, and the efficacy evaluations such as histopathological observation were carried out. The serum biomarkers of Yishen Guluo Mixture in the treatment of CGN were screened out by ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry(UPLC-Q-TOF-MS) combined with multivariate statistical analysis, and the metabolic pathways were analyzed. According to the mass spectrum ion fragment information and metabolic pathway, the components absorbed into the blood(prototypes and metabolites) from Yishen Guluo Mixture were identified and analyzed by using PeakView 1.2 and MetabolitePilot 2.0.4. By integrating metabolomics and serum pharmacochemistry data, a mathematical model of correlation analysis between serum biomarkers and components absorbed into blood was constructed to screen out the potential effective substances of Yishen Guluo Mixture in the treatment of CGN. Yishen Guluo mixture significantly decreased the levels of 24-hour urinary protein, serum urea nitrogen, and creatinine in rats with CGN, and improved the pathological damage of the kidney tissue. Twenty serum biomarkers of Yishen Guluo Mixture in the treatment of CGN, such as arachidonic acid and lysophosphatidylcholine, were screened out, involving arachidonic acid metabolism, glycerol phosphatide metabolism, and other pathways. Based on the serum pharmacochemistry, 8 prototype components and 20 metabolites in the serum-containing Yishen Guluo Mixture were identified. According to the metabolomics and correlation analysis of serum pharmacochemistry, 12 compounds such as genistein absorbed into the blood from Yishen Guluo Mixture were selected as the potential effective substances for the treatment of CGN. Based on metabolomics and serum pharmacochemistry, the effective substances and mechanism of Yishen Guluo Mixture in the treatment of CGN are analyzed and explained in this study, which provides a new idea for the development of innovative traditional Chinese medicine for the treatment of CGN.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Arachidonic Acid
		                        			;
		                        		
		                        			Biomarkers/blood*
		                        			;
		                        		
		                        			Blood Proteins
		                        			;
		                        		
		                        			Chromatography, High Pressure Liquid
		                        			;
		                        		
		                        			Creatinine
		                        			;
		                        		
		                        			Drugs, Chinese Herbal/therapeutic use*
		                        			;
		                        		
		                        			Glomerulonephritis/metabolism*
		                        			;
		                        		
		                        			Metabolomics
		                        			;
		                        		
		                        			Urea
		                        			;
		                        		
		                        			Chronic Disease
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Complex Mixtures/therapeutic use*
		                        			
		                        		
		                        	
5.Effect of electroacupuncture on protein expressions of SOCS3 and IRS-1 in hypothalamus and pancreas islet morphology in diabetic fatty rats.
Shu-Ting ZHUANG ; Rui LI ; Shan-Shan SONG ; Hao-Ru DUAN ; Qiu-Yan LI
Chinese Acupuncture & Moxibustion 2022;42(9):1024-1028
		                        		
		                        			OBJECTIVE:
		                        			To observe the effect of electroacupuncture (EA) on protein expressions of suppressor of cytokine signaling 3 (SOCS3) and insulin receptor substrate-1 (IRS-1) in hypothalamus and morphology of pancreas islet in Zucker diabetic fatty (ZDF) rats, and to explore its possible mechanism on improving plasma glucose and insulin resistance of type 2 diabetes mellitus (T2DM).
		                        		
		                        			METHODS:
		                        			Twelve SPF male ZDF rats were selected and fed with high-fat diet for 4 weeks to establish the T2DM model, after modeling, the rats were randomly divided into a model group and an EA group, 6 rats in each one. Besides, 6 SPF male Zucker lean rats were selected as a blank group. In the EA group, EA was applied at "Pishu" (BL 20), "Weiwanxiashu" (EX-B 3), "Zusanli" (ST 36) and "Sanyinjiao" (SP 6), with continuous wave, 15 Hz in frequency, 2 mA in intensity, once a day, 20 min each time, 6 times a week for 4 weeks. The fasting plasma glucose (FPG) was measured before and after intervention. The serum level of fasting insulin (FINS) was measured by radioimmunoassay, and the homeostasis model assessment of insulin resistance index (HOMA-IR) was calculated; the morphological change of pancreas islets was observed by HE staining; the protein expressions of SOCS3 and IRS-1 in hypothalamus were detected by Western blot.
		                        		
		                        			RESULTS:
		                        			Before intervention, compared with the blank group, FPG in the model group and the EA group was increased (P<0.01). After intervention, compared with the blank group, FPG, serum level of FINS and HOMA-IR were increased (P<0.01), the protein expression of SOCS3 was increased while IRS-1 was decreased in the hypothalamus in the model group (P<0.01). Compared with the model group, FPG, serum level of FINS and HOMA-IR were decreased (P<0.01), the protein expression of SOCS3 was decreased while IRS-1 was increased in the hypothalamus in the EA group (P<0.01). In the model group, the shape of pancreas islets was irregular, the area of pancreas islets and the number of islet β cell nuclei were decreased, the nuclei of islet β cell was compensatory enlargement. In the EA group, the shape and the area of pancreas islets and the number of islet β cell nuclei were improved, the compensatory increase of islet β cell nuclei was alleviated compared with the model group.
		                        		
		                        			CONCLUSION
		                        			Electroacupuncture can reduce the fasting plasma glucose, improve the morphology of pancreas islets, and alleviate the insulin resistance in ZDF rats. The mechanism may relate to the down-regulation of SOCS3 and up-regulation of IRS-1 in the hypothalamus, and improving the function of hypothalamus in regulating peripheral glucose metabolism.
		                        		
		                        		
		                        		
		                        			Acupuncture Points
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blood Glucose/metabolism*
		                        			;
		                        		
		                        			Diabetes Mellitus, Type 2/therapy*
		                        			;
		                        		
		                        			Electroacupuncture
		                        			;
		                        		
		                        			Hypothalamus/metabolism*
		                        			;
		                        		
		                        			Insulin Receptor Substrate Proteins/metabolism*
		                        			;
		                        		
		                        			Insulin Resistance
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Pancreas/metabolism*
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Zucker
		                        			;
		                        		
		                        			Suppressor of Cytokine Signaling 3 Protein/metabolism*
		                        			
		                        		
		                        	
6.Expression, purification and bioactivity analysis of a recombinant fusion protein rHSA-hFGF21 in Pichia pastoris.
Tiantian HUANG ; Jianying QI ; Ganggang YANG ; Xianlong YE
Chinese Journal of Biotechnology 2022;38(9):3419-3432
		                        		
		                        			
		                        			Human fibroblast growth factor 21 (hFGF21) has become a candidate drug for regulating blood glucose and lipid metabolism. The poor stability and short half-life of hFGF21 resulted in low target tissue availability, which hampers its clinical application. In this study, the hFGF21 was fused with a recombinant human serum albumin (HSA), and the resulted fusion protein rHSA-hFGF21 was expressed in Pichia pastoris. After codon optimization, the recombinant gene fragment rHSA-hFGF21 was inserted into two different vectors (pPIC9k and pPICZαA) and transformed into three different strains (X33, GS115 and SMD1168), respectively. We investigated the rHSA-hFGF21 expression levels in three different strains and screened an engineered strain X33-pPIC9K-rHSA-hFGF21 with the highest expression level. To improve the production efficiency of rHSA-hFGF21, we optimized the shake flask fermentation conditions, such as the OD value, methanol concentration and induction time. After purification by hollow fiber membrane separation, Blue affinity chromatography and Q ion exchange chromatography, the purity of the rHSA-hFGF21 protein obtained was 98.18%. Compared to hFGF21, the biostabilities of rHSA-hFGF21, including their resistance to temperature and trypsinization were significantly enhanced, and its plasma half-life was extended by about 27.6 times. Moreover, the fusion protein rHSA-hFGF21 at medium and high concentration showed a better ability to promote glucose uptake after 24 h of stimulation in vitro. In vivo animal studies showed that rHSA-hFGF21 exhibited a better long-term hypoglycemic effect than hFGF21 in type 2 diabetic mice. Our results demonstrated a small-scale production of rHSA-hFGF21, which is important for large-scale production and clinical application in the future.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blood Glucose/metabolism*
		                        			;
		                        		
		                        			Diabetes Mellitus, Experimental
		                        			;
		                        		
		                        			Fibroblast Growth Factors
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hypoglycemic Agents/metabolism*
		                        			;
		                        		
		                        			Methanol/metabolism*
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Pichia/metabolism*
		                        			;
		                        		
		                        			Recombinant Fusion Proteins
		                        			;
		                        		
		                        			Recombinant Proteins/metabolism*
		                        			;
		                        		
		                        			Saccharomycetales
		                        			;
		                        		
		                        			Serum Albumin/metabolism*
		                        			;
		                        		
		                        			Serum Albumin, Human/metabolism*
		                        			
		                        		
		                        	
7.Rumex acetosella Inhibits Platelet Function via Impaired MAPK and Phosphoinositide 3-Kinase Signaling.
Bo-Ra JEON ; Muhammad IRFAN ; Seung Eun LEE ; Jeong Hoon LEE ; Man Hee RHEE
Chinese journal of integrative medicine 2022;28(9):802-808
		                        		
		                        			OBJECTIVE:
		                        			To examine the antiplatelet and antithrombotic activity of Rumex acetosella extract.
		                        		
		                        			METHODS:
		                        			Standard light aggregometry was used for platelet aggregation, intracellular calcium mobilization assessed using Fura-2/AM, granule secretion (ATP release) by luminometer, and fibrinogen binding to integrin αIIbβ3 detected using flow cytometry. Western blotting is carried out to determine the phosphorylation of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt signaling.
		                        		
		                        			RESULTS:
		                        			Rumex acetosella displayed the ability to inhibit platelet aggregation, calcium mobilization, granule secretion, and fibrinogen binding to integrin αIIbβ3. Rumex acetosella has also down-regulated MAPK and PI3K/Akt phosphorylation (all P<0.01).
		                        		
		                        			CONCLUSION
		                        			Rumex acetosella extract exhibits antiplatelet activity via modulating GPVI signaling, and it may protect against the development of platelet-related cardiovascular diseases.
		                        		
		                        		
		                        		
		                        			Blood Platelets/metabolism*
		                        			;
		                        		
		                        			Calcium/metabolism*
		                        			;
		                        		
		                        			Fibrinogen/metabolism*
		                        			;
		                        		
		                        			Mitogen-Activated Protein Kinases/metabolism*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinase/pharmacology*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			Plant Extracts/pharmacology*
		                        			;
		                        		
		                        			Platelet Aggregation
		                        			;
		                        		
		                        			Platelet Aggregation Inhibitors/pharmacology*
		                        			;
		                        		
		                        			Platelet Glycoprotein GPIIb-IIIa Complex/pharmacology*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Rumex/metabolism*
		                        			
		                        		
		                        	
8.New effect of G-protein coupled receptors on blood pressure regulation.
Hong-Xia DU ; Guang-Xu XIAO ; Xiao-Li DU ; Yan ZHU
China Journal of Chinese Materia Medica 2021;46(1):6-14
		                        		
		                        			
		                        			Hypertension is a clinical syndrome characterized by elevated systemic arterial blood pressure, which may be accompanied by functional or organic damage of heart, brain, kidney and other organs. The pathogenesis and development of hypertension are affected by genetic, environmental, epigenetic, intestinal microbiota and other factors. They are the result of multiple factors that promote the change of blood pressure level and vascular resistance. G protein coupled receptors(GPCRs) are the largest and most diverse superfamily of transmembrane receptors that transmit signals across cell membranes and mediate a large number of cellular responses required by human physiology. A variety of GPCRs are involved in the control of blood pressure and the maintenance of normal function of cardiovascular system. Hypertension contributes to the damages of heart, brain, kidney, intestine and other organs. Many GPCRs are expressed in various organs to regulate blood pressure. Although many GPCRs have been used as therapeutic targets for hypertension, their efficacy has not been fully studied. The purpose of this paper is to elucidate the role of GPCRs in blood pressure regulation and its distribution in target organs. The relationship between GPCRs related to intestinal microorganisms and blood pressure is emphasized. It is proposed that traditional Chinese medicine may be a new way to treat hypertension by regulating the related GPCRs via intestinal microbial metabolites.
		                        		
		                        		
		                        		
		                        			Blood Pressure
		                        			;
		                        		
		                        			GTP-Binding Proteins
		                        			;
		                        		
		                        			Gastrointestinal Microbiome
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hypertension/genetics*
		                        			;
		                        		
		                        			Receptors, G-Protein-Coupled/metabolism*
		                        			
		                        		
		                        	
9.Dexmedetomidine alleviates LPS/D-Gal-induced acute liver injury via up-regulation of LC3-II expression in mice.
Xiao-Jiao HE ; Bin XIE ; Song HUANG ; Ming-Hua LIU
Acta Physiologica Sinica 2021;73(6):901-908
		                        		
		                        			
		                        			The aim of the present study was to investigate the effects of dexmedetomidine (DEX) on acute liver injury induced by lipopolysaccharide (LPS)/D-galactosamine (D-Gal) and the underlying mechanism. Male BALB/c mice were intraperitoneally injected with LPS/D-Gal to induce acute liver injury model, and pretreated with DEX or in combination with the autophagy inhibitor, 3-methyladenine (3-MA) 30 min before injection. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity, as well as myeloperoxidase (MPO) activity in liver tissue were determined with the corresponding kits. Serum tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) levels were determined by ELISA. The protein expression levels of LC3-II and P62 in liver tissue were determined by Western blot. Liver histopathological changes were detected by HE staining. The results showed that, compared with control group, LPS/D-Gal enhanced ALT and AST activity, increased TNF-α and IL-6 levels, as well as MPO activity, up-regulated LC3-II and P62 protein expression levels, and significantly induced pathological damage in liver tissue. DEX reversed the above changes in the LPS/D-Gal group, whereas these protective effects of DEX were blocked by 3-MA. The above results suggest that DEX alleviates LPS/D-Gal-induced acute liver injury, which may be associated with the up-regulation of LC3-II protein expression and the activation of autophagy.
		                        		
		                        		
		                        		
		                        			Alanine Transaminase
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Chemical and Drug Induced Liver Injury/drug therapy*
		                        			;
		                        		
		                        			Dexmedetomidine/pharmacology*
		                        			;
		                        		
		                        			Galactosamine/toxicity*
		                        			;
		                        		
		                        			Interleukin-6/blood*
		                        			;
		                        		
		                        			Lipopolysaccharides/toxicity*
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Microtubule-Associated Proteins/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/blood*
		                        			;
		                        		
		                        			Up-Regulation
		                        			
		                        		
		                        	
10.Determination of plasma protein binding rates of nine compounds of Inula cappa extraction based on method of equilibrium dialysis.
Hong-Song BAO ; Jing-Yu HOU ; He-Jia HU ; Yue-Ting LI ; Lin ZHENG ; Yong HUANG ; Guang-Cheng WANG ; Meng ZHOU ; Yan-Yu LAN ; Zi-Peng GONG
China Journal of Chinese Materia Medica 2019;44(7):1475-1484
		                        		
		                        			
		                        			To determine the plasma protein binding rate of the nine compounds in Inula cappa extraction by the method of equilibrium dialysis. The proteins in plasma samples were precipitated by methanol, and the ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) was developed for determination of the concentrations of the nine active compounds, namely chlorogenic acid, scopolin, neochlorogenic acid, cryptochlorogenic acid, 1,3-O-dicaffeoylquinic acid, galuteolin, 3,4-O-dicaffeoylquinic acid, 3,5-O-dicaffeoylquinic acid, 4,5-O-dicaffeoylquinic acid, with the internal standard of puerarin. We found that all components have a good linearity(r≥0.999), and accuracy, precision, extraction recovery and stability conformed to the requirements of determination, without endogenous compounds disturbing within the range of optimum concentration. This suggested that the method was stable and reliable, and could be used for the determination of the plasma protein binding rates of the nine active compounds in rat and human plasma of I. cappa. The plasma protein binding rates of the nine active compounds in rat and human plasma respectively were(41.07±0.046)%-(94.95±0.008)%, and(37.66±0.043)%-(97.46±0.013)%. According to the results, there were differences in the plasma protein binding rates of the nine compounds in I. cappa extraction between rat and human.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blood Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Chromatography, High Pressure Liquid
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inula
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Phytochemicals
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Protein Binding
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Reproducibility of Results
		                        			;
		                        		
		                        			Tandem Mass Spectrometry
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail