1.Review of the health benefits of habitual consumption of miso soup: focus on the effects on sympathetic nerve activity, blood pressure, and heart rate.
Environmental Health and Preventive Medicine 2020;25(1):45-45
High salt intake increases blood pressure, and dietary salt intake has been clearly demonstrated to be associated with hypertension incidence. Japanese people consume higher amounts of salt than Westerners. It has been reported that miso soup was one of the major sources of daily salt intake in Japanese people. Adding salt is indispensable to make miso, and therefore, in some cases, refraining from miso soup is recommended to reduce dietary salt intake. However, recent studies using salt-sensitive hypertensive models have revealed that miso lessens the effects of salt on blood pressure. In other word, the intake of miso dose not increase the blood pressure compared to the equivalent intake of salt. In addition, many clinical observational studies have demonstrated the absence of a relationship between the frequency of miso soup intake and blood pressure levels or hypertension incidence. The mechanism of this phenomenon seen in the subjects with miso soup intake has not been fully elucidated yet. However, in basic studies, it was found that the ingredients of miso attenuate sympathetic nerve activity, resulting in lowered blood pressure and heart rate. Therefore, this review focused on the differences between the effects of miso intake and those of the equivalent salt intake on sympathetic nerve activity, blood pressure, and heart rate.
Blood Pressure
;
drug effects
;
physiology
;
Heart Rate
;
drug effects
;
physiology
;
Humans
;
Soy Foods
;
adverse effects
;
Sympathetic Nervous System
;
drug effects
;
physiology
2.Chronic Intermittent Hypobaric Hypoxia Ameliorates Renal Vascular Hypertension Through Up-regulating NOS in Nucleus Tractus Solitarii.
Na LI ; Yue GUAN ; Yan-Ming TIAN ; Hui-Jie MA ; Xiangjian ZHANG ; Yi ZHANG ; Sheng WANG
Neuroscience Bulletin 2019;35(1):79-90
Chronic intermittent hypobaric hypoxia (CIHH) is known to have an anti-hypertensive effect, which might be related to modulation of the baroreflex in rats with renal vascular hypertension (RVH). In this study, RVH was induced by the 2-kidney-1-clip method (2K1C) in adult male Sprague-Dawley rats. The rats were then treated with hypobaric hypoxia simulating 5000 m altitude for 6 h/day for 28 days. The arterial blood pressure (ABP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were measured before and after microinjection of L-arginine into the nucleus tractus solitarii (NTS) in anesthetized rats. Evoked excitatory postsynaptic currents (eEPSCs) and spontaneous EPSCs (sEPSCs) were recorded in anterogradely-labeled NTS neurons receiving baroreceptor afferents. We measured the protein expression of neuronal nitric oxide synthase (nNOS) and endothelial NOS (eNOS) in the NTS. The results showed that the ABP in RVH rats was significantly lower after CIHH treatment. The inhibition of ABP, HR, and RSNA induced by L-arginine was less in RVH rats than in sham rats, and greater in the CIHH-treated RVH rats than the untreated RVH rats. The eEPSC amplitude in NTS neurons receiving baroreceptor afferents was lower in the RVH rats than in the sham rats and recovered after CIHH. The protein expression of nNOS and eNOS in the NTS was lower in the RVH rats than in the sham rats and this decrease was reversed by CIHH. In short, CIHH treatment decreases ABP in RVH rats via up-regulating NOS expression in the NTS.
Animals
;
Baroreflex
;
physiology
;
Blood Pressure
;
drug effects
;
Hypertension
;
metabolism
;
Hypoxia
;
chemically induced
;
Kidney
;
drug effects
;
metabolism
;
Male
;
Nitric Oxide Synthase Type I
;
drug effects
;
metabolism
;
Rats, Sprague-Dawley
;
Solitary Nucleus
;
metabolism
3.Blockade of Endogenous Angiotensin-(1-7) in Hypothalamic Paraventricular Nucleus Attenuates High Salt-Induced Sympathoexcitation and Hypertension.
Xiao-Jing YU ; Yu-Wang MIAO ; Hong-Bao LI ; Qing SU ; Kai-Li LIU ; Li-Yan FU ; Yi-Kang HOU ; Xiao-Lian SHI ; Ying LI ; Jian-Jun MU ; Wen-Sheng CHEN ; Wei CUI ; Guo-Qing ZHU ; Philip J EBENEZER ; Joseph FRANCIS ; Yu-Ming KANG
Neuroscience Bulletin 2019;35(1):47-56
Angiotensin (Ang)-(1-7) is an important biologically-active peptide of the renin-angiotensin system. This study was designed to determine whether inhibition of Ang-(1-7) in the hypothalamic paraventricular nucleus (PVN) attenuates sympathetic activity and elevates blood pressure by modulating pro-inflammatory cytokines (PICs) and oxidative stress in the PVN in salt-induced hypertension. Rats were fed either a high-salt (8% NaCl) or a normal salt diet (0.3% NaCl) for 10 weeks, followed by bilateral microinjections of the Ang-(1-7) antagonist A-779 or vehicle into the PVN. We found that the mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma norepinephrine (NE) were significantly increased in salt-induced hypertensive rats. The high-salt diet also resulted in higher levels of the PICs interleukin-6, interleukin-1beta, tumor necrosis factor alpha, and monocyte chemotactic protein-1, as well as higher gp91 expression and superoxide production in the PVN. Microinjection of A-779 (3 nmol/50 nL) into the bilateral PVN of hypertensive rats not only attenuated MAP, RSNA, and NE, but also decreased the PICs and oxidative stress in the PVN. These results suggest that the increased MAP and sympathetic activity in salt-induced hypertension can be suppressed by blockade of endogenous Ang-(1-7) in the PVN, through modulation of PICs and oxidative stress.
Angiotensin I
;
antagonists & inhibitors
;
metabolism
;
Animals
;
Antioxidants
;
pharmacology
;
Blood Pressure
;
drug effects
;
Hypertension
;
chemically induced
;
drug therapy
;
Male
;
Oxidative Stress
;
drug effects
;
Paraventricular Hypothalamic Nucleus
;
drug effects
;
Peptide Fragments
;
antagonists & inhibitors
;
metabolism
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
metabolism
;
Sodium Chloride, Dietary
;
pharmacology
4.Intermedin in Paraventricular Nucleus Attenuates Sympathoexcitation and Decreases TLR4-Mediated Sympathetic Activation via Adrenomedullin Receptors in Rats with Obesity-Related Hypertension.
Jing SUN ; Xing-Sheng REN ; Ying KANG ; Hang-Bing DAI ; Lei DING ; Ning TONG ; Guo-Qing ZHU ; Ye-Bo ZHOU
Neuroscience Bulletin 2019;35(1):34-46
Intermedin/adrenomedullin-2 (IMD/AM2), a member of the calcitonin gene-related peptide/AM family, plays an important role in protecting the cardiovascular system. However, its role in the enhanced sympathoexcitation in obesity-related hypertension is unknown. In this study, we investigated the effects of IMD in the paraventricular nucleus (PVN) of the hypothalamus on sympathetic nerve activity (SNA), and lipopolysaccharide (LPS)-induced sympathetic activation in obesity-related hypertensive (OH) rats induced by a high-fat diet for 12 weeks. Acute experiments were performed under anesthesia. The dynamic alterations of sympathetic outflow were evaluated as changes in renal SNA and mean arterial pressure (MAP) in response to specific drugs. Male rats were fed a control diet (12% kcal as fat) or a high-fat diet (42% kcal as fat) for 12 weeks to induce OH. The results showed that IMD protein in the PVN was downregulated, but Toll-like receptor 4 (TLR4) and plasma norepinephrine (NE, indicating sympathetic hyperactivity) levels, and systolic blood pressure were increased in OH rats. LPS (0.5 µg/50 nL)-induced enhancement of renal SNA and MAP was greater in OH rats than in obese or control rats. Bilateral PVN microinjection of IMD (50 pmol) caused greater decreases in renal SNA and MAP in OH rats than in control rats, and inhibited LPS-induced sympathetic activation, and these were effectively prevented in OH rats by pretreatment with the AM receptor antagonist AM22-52. The mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) inhibitor U0126 in the PVN partially reversed the LPS-induced enhancement of SNA. However, IMD in the PVN decreased the LPS-induced ERK activation, which was also effectively prevented by AM22-52. Chronic IMD administration resulted in significant reductions in the plasma NE level and blood pressure in OH rats. Moreover, IMD lowered the TLR4 protein expression and ERK activation in the PVN, and decreased the LPS-induced sympathetic overactivity. These results indicate that IMD in the PVN attenuates SNA and hypertension, and decreases the ERK activation implicated in the LPS-induced enhancement of SNA in OH rats, and this is mediated by AM receptors.
Adrenomedullin
;
metabolism
;
Animals
;
Blood Pressure
;
drug effects
;
physiology
;
Hypertension
;
etiology
;
Lipopolysaccharides
;
pharmacology
;
Male
;
Neuropeptides
;
metabolism
;
Obesity
;
complications
;
Rats, Sprague-Dawley
;
Receptors, Adrenomedullin
;
drug effects
;
metabolism
;
Sympathetic Nervous System
;
drug effects
;
metabolism
;
Toll-Like Receptor 4
;
metabolism
5.Anti-Hypertensive Action of Fenofibrate via UCP2 Upregulation Mediated by PPAR Activation in Baroreflex Afferent Pathway.
Jian GUAN ; Miao ZHAO ; Chao HE ; Xue LI ; Ying LI ; Jie SUN ; Wei WANG ; Ya-Li CUI ; Qing ZHANG ; Bai-Yan LI ; Guo-Fen QIAO
Neuroscience Bulletin 2019;35(1):15-24
Fenofibrate, an agonist for peroxisome proliferator-activated receptor alpha (PPAR-α), lowers blood pressure, but whether this action is mediated via baroreflex afferents has not been elucidated. In this study, the distribution of PPAR-α and PPAR-γ was assessed in the nodose ganglion (NG) and the nucleus of the solitary tract (NTS). Hypertension induced by drinking high fructose (HFD) was reduced, along with complete restoration of impaired baroreceptor sensitivity, by chronic treatment with fenofibrate. The molecular data also showed that both PPAR-α and PPAR-γ were dramatically up-regulated in the NG and NTS of the HFD group. Expression of the downstream signaling molecule of PPAR-α, the mitochondrial uncoupling protein 2 (UCP2), was up-regulated in the baroreflex afferent pathway under similar experimental conditions, along with amelioration of reduced superoxide dismutase activity and increased superoxide in HFD rats. These results suggest that chronic treatment with fenofibrate plays a crucial role in the neural control of blood pressure by improving baroreflex afferent function due at least partially to PPAR-mediated up-regulation of UCP2 expression and reduction of oxidative stress.
Afferent Pathways
;
drug effects
;
Animals
;
Antihypertensive Agents
;
pharmacology
;
Baroreflex
;
drug effects
;
Blood Pressure
;
drug effects
;
Fenofibrate
;
pharmacology
;
Male
;
Oxidative Stress
;
drug effects
;
PPAR gamma
;
drug effects
;
metabolism
;
Rats, Sprague-Dawley
;
Signal Transduction
;
drug effects
;
Transcriptional Activation
;
drug effects
;
Uncoupling Protein 2
;
drug effects
;
metabolism
;
Up-Regulation
6.Blood-Letting Therapy for Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.
Xing-Jiang XIONG ; Peng-Qian WANG ; Sheng-Jie LI
Chinese journal of integrative medicine 2019;25(2):139-146
OBJECTIVE:
To evaluate the efficacy and safety of blood-letting therapy (BLT) in treatment of hypertension.
METHODS:
A comprehensive electronic and manual bibliographic searches were performed in Cochrane Central Register of Controlled Trials, Excerpt Medica Database (EMBASE), PubMed, China National Knowledge Infrastructure, Chinese Scientific Journal Database, Chinese Biomedical Literature Database, and Wanfang Database to identify randomized controlled trials (RCTs) in which hypertensive patients were treated with BLT or BLT plus antihypertensive drugs (BPAD) against placebo, no treatment or antihypertensive drugs. The Cochrane Risk Assessment Tool was used to assess the methodological quality of trials. The Review Manager 5.3 software was used for meta-analysis.
RESULTS:
A total of 7 RCTs with 637 hypertensive patients from 1989 to 2017 were identified. Compared with antihypertensive drugs, blood pressure was significantly reduced by BLT (RR=1.21, 95% CI: 1.01 to 1.44, P=0.03; heterogeneity: P=0.06, I=60%) and BPAD (RR=1.25, 95% CI, 1.02 to 1.53, P=0.03; heterogeneity: P= 0.01, I=71%). Moreover, a significant improvement in Chinese medicine syndrome by BLT (RR=1.32; 95% CI: 1.14 to 1.53, P=0.0002; heterogeneity: P=0.53, I=0%) and BPAD (RR=1.47; 95% CI: 1.06 to 2.04, P=0.02; heterogeneity: P=0.13, I=56%) was identified. The reported adverse effects were well tolerated.
CONCLUSION
Although some positive findings were identified, no definite conclusions regarding the efficacy and safety of BLT as complementary and alternative approach for treatment of hypertension could be drew due to the generally poor methodological design, significant heterogeneity, and insufficient clinical data. Further rigorously designed trials are warranted to confirm the results.
Adult
;
Aged
;
Aged, 80 and over
;
Antihypertensive Agents
;
therapeutic use
;
Blood Pressure
;
drug effects
;
Bloodletting
;
Combined Modality Therapy
;
Humans
;
Hypertension
;
drug therapy
;
physiopathology
;
therapy
;
Medicine, Chinese Traditional
;
Middle Aged
;
Randomized Controlled Trials as Topic
;
Syndrome
;
Treatment Outcome
7.Effect of Shexiang Tongxin Dropping Pills () on the Immediate Blood Flow of Patients with Coronary Slow Flow.
Sheng-Huang WANG ; Lin CHU ; Zhao XU ; Hong-Lin ZHOU ; Jiang-Fei CHEN ; Huang-Fu NING
Chinese journal of integrative medicine 2019;25(5):360-365
OBJECTIVE:
To observe the immediate effect and safety of Shexiang Tongxin dropping pills (, STDP) on patients with coronary slow flow (CSF), and furthermore, to explore new evidence for the use of Chinese medicine in treating ischemic chest pain.
METHODS:
Coronary angiography (CAG) with corrected thrombolysis in myocardial infarction (TIMI) frame count (CTFC) was applied (collected at 30 frames/s). The treatment group included 22 CSF patients, while the control group included 22 individuals with normal coronary flow. CSF patients were given 4 STDP through sublingual administration, and CAG was performed 5 min after the medication. The immediate blood flow frame count, blood pressure, and heart rate of patients before and after the use of STDP were compared. The liver and kidney functions of patients were examined before and after treatments.
RESULTS:
There was a significant difference in CTFC between groups (P<0.05). The average CTFC values of the vessels with slow blood flow in CSF patients were, respectively, 49.98 ± 10.01 and 40.42 ± 11.33 before and after the treatment with STDP, a 19.13% improvement. The CTFC values (frame/s) measured before and after treatment at the left anterior descending coronary artery, left circumflex artery, and right coronary artery were, respectively, 48.00 ± 13.32 and 41.80 ± 15.38, 59.00 ± 4.69 and 50.00 ± 9.04, and 51.90 ± 8.40 and 40.09 ± 10.46, giving 12.92%, 15.25%, and 22.76% improvements, respectively. The CTFC values of vessels with slow flow before treatment were significantly decreased after treatment (P<0.05). There were no apparent changes in the heart rate, blood pressure, or liver or kidney function of CSF patients after treatment with STDP (all P>0.05).
CONCLUSIONS
The immediate effect of STDP in treating CSF patients was apparent. This medication could significantly improve coronary flow without affecting blood pressure or heart rate. Our findings support the potential of Chinese medicine to treat ischemic chest pain.
Blood Pressure
;
drug effects
;
Coronary Circulation
;
drug effects
;
physiology
;
Drugs, Chinese Herbal
;
pharmacology
;
therapeutic use
;
Female
;
Heart Rate
;
drug effects
;
Humans
;
Kidney
;
drug effects
;
physiopathology
;
Liver
;
drug effects
;
physiopathology
;
Male
;
Middle Aged
;
No-Reflow Phenomenon
;
drug therapy
;
physiopathology
8.Low-dose intravenous ketamine versus intravenous ketorolac in pain control in patients with acute renal colic in an emergency setting: a double-blind randomized clinical trial
Mehran SOTOODEHNIA ; Mozhgan FARMAHINI-FARAHANI ; Arash SAFAIE ; Fatemeh RASOOLI ; Alireza BARATLOO
The Korean Journal of Pain 2019;32(2):97-104
BACKGROUND: This study was conducted to compare the effectiveness of low-dose ketamine versus ketorolac in pain control in patients with acute renal colic presenting to the emergency department (ED). METHODS: This is a double-blind randomized clinical trial. The initial pain severity was assessed using the numerical rating scale (NRS). Then, ketamine or ketorolac was administered intravenously at a dose of 0.6 mg/kg and 30 mg respectively. The pain severity and adverse drug reactions were recorded 5, 15, 30, 60, and 120 min thereafter. RESULTS: The data of 62 subjects in the ketamine group and 64 patients in the ketorolac group were analyzed. The mean age of the patients was 34.2 ± 9.9 and 37.9 ± 10.6 years in the ketamine and ketorolac group, respectively. There was no significant difference in the mean NRS scores at each time point, except for the 5 min, between the two groups. Despite a marked decrease in pain severity in the ketamine group from drug administration at the 5 min, a slight increase in pain was observed from the 5 min to the 15 min. The rate of adverse drug reactions, including dizziness (P = 0.001), agitation (P = 0.002), increased systolic blood pressure (> 140 mmHg), and diastolic blood pressure (> 90 mmHg) was higher in the ketamine group. CONCLUSIONS: Low dose ketamine is as effective as ketorolac in pain management in patients with renal colic presenting to the ED. However, it is associated with a higher rate of adverse drug reactions.
Acute Pain
;
Blood Pressure
;
Dihydroergotamine
;
Dizziness
;
Double-Blind Method
;
Drug-Related Side Effects and Adverse Reactions
;
Emergencies
;
Emergency Service, Hospital
;
Humans
;
Ketamine
;
Ketorolac
;
Pain Management
;
Renal Colic
;
Urinary Calculi
9.Quantification of Panax notoginseng saponins metabolites in rat plasma with in vivo gut microbiota-mediated biotransformation by HPLC-MS/MS.
Yin-Ping GUO ; Man-Yun CHEN ; Li SHAO ; Wei ZHANG ; Tai RAO ; Hong-Hao ZHOU ; Wei-Hua HUANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(3):231-240
Panax notoginseng saponins (PNS) are the major components of Panax notoginseng, with multiple pharmacological activities but poor oral bioavailability. PNS could be metabolized by gut microbiota in vitro, while the exact role of gut microbiota of PNS metabolism in vivo remains poorly understood. In this study, pseudo germ-free rat models were constructed by using broad-spectrum antibiotics to validate the gut microbiota-mediated transformation of PNS in vivo. Moreover, a high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was developed for quantitative analysis of four metabolites of PNS, including ginsenoside F1 (GF1), ginsenoside Rh2 (GRh2), ginsenoside compound K (GCK) and protopanaxatriol (PPT). The results showed that the four metabolites could be detected in the control rat plasma, while they could not be determined in pseudo germ-free rat plasma. The results implied that PNS could not be biotransformed effectively when gut microbiota was disrupted. In conclusion, gut microbiota plays an important role in biotransformation of PNS into metabolites in vivo.
Animals
;
Anti-Bacterial Agents
;
pharmacology
;
Biotransformation
;
Chromatography, High Pressure Liquid
;
Feces
;
microbiology
;
Gastrointestinal Microbiome
;
drug effects
;
physiology
;
Ginsenosides
;
blood
;
Male
;
Panax notoginseng
;
chemistry
;
Rats, Sprague-Dawley
;
Sapogenins
;
blood
;
Saponins
;
administration & dosage
;
metabolism
;
Tandem Mass Spectrometry
10.Effects of Ramipril on the expression of connexin 43 in cerebral arteries of spontaneously hypertensive rats.
Tian TIAN ; Chao-Yang TAN ; Qi-Hua JIA ; Wen-Wen CONG ; Jun-Jie TIAN ; Ke-Tao MA ; Li LI ; Jun-Qiang SI
Acta Physiologica Sinica 2019;71(3):395-404
The present study was designed to examine whether Ramipril (an inhibitor of angiotensin-converting enzyme) affected spontaneous hypertension-induced injury of cerebral artery by regulating connexin 43 (Cx43) expression. Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) were randomly divided into WKY, WKY + Ramipril, SHR, and SHR + Ramipril groups (n = 8). The arterial pressure was monitored by the tail-cuff method, and vascular function in basilar arteries was examined by pressure myography. Hematoxylin-eosin (HE) staining was used to show vascular remodeling. The expression and distribution of Cx43 was determined by using immunofluorescence and immunohistochemistry analysis. The protein and mRNA levels of Cx43 were examined by Western blot and real-time PCR analysis, respectively. The results showed that chronic Ramipril treatment significantly attenuated blood pressure elevation (P < 0.01, n = 8) and blood vessel wall thickness in SHR (P < 0.01, n = 8). The cerebral artery contraction rate in the SHR group was higher than that in the WKY group (P < 0.05, n = 8). The cerebral artery contraction rate in the SHR + Ramipril group was lower than that in the SHR group (P < 0.05, n = 8). Pretreatment with 2-APB (Cx43 non-specific blocker) or Gap26 (Cx43 specific blocker) significantly decreased the vasoconstriction rate, while pretreatment with AAP10 (Cx43 non-specific agonist) significantly increased the vasoconstriction in the SHR + Ramipril group (P < 0.05, n = 8). In addition, the expression of Cx43 mRNA and protein in cerebral arteries of SHR group was higher than that of WKY group (P < 0.05, n = 8). The mRNA and protein expression of Cx43 in cerebral arteries of SHR + Ramipril group was significantly lower than that of SHR group (P < 0.05, n = 8). These results suggest that Ramipril can down-regulate the expression of Cx43 mRNA and protein in cerebral arterial cells of SHR, lower blood pressure, promote vasodilation, and improve arterial damage and vascular dysfunction caused by hypertension.
Animals
;
Blood Pressure
;
Cerebral Arteries
;
drug effects
;
metabolism
;
Connexin 43
;
metabolism
;
Hypertension
;
drug therapy
;
Ramipril
;
pharmacology
;
Random Allocation
;
Rats
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Vascular Remodeling

Result Analysis
Print
Save
E-mail