3.Effectiveness of smartphone applications in achieving glycemic control among adult diabetic patients: A meta-analysis.
Eron Allen C. Tan ; Janella Jillian G. Abella ; Marie Ruth A. Echavez
The Filipino Family Physician 2024;62(1):145-154
BACKGROUND
Diabetes Mellitus Type 2 is a significant global health issue with a high prevalence in the Philippines. Managing this condition effectively is crucial, and digital technologies, particularly smartphone (mHealth) applications, have emerged as a potential tool in diabetes self-management.
OBJECTIVEThis study evaluated the effectiveness of smartphone (mHealth) application use in achieving glycemic control among adults with Type 2 Diabetes Mellitus, focusing on HbA1c levels and medication adherence.
METHODThis systematic review and meta-analysis, adhering to PRISMA guidelines, analyzed randomized controlled trials from databases like PubMed and Embase, comparing interventions using mHealth applications with standard care. The primary measures were HbA1c levels and medication adherence.
RESULTSTen studies involving 20,984 participants were included in the meta-analysis. Using mHealth applications led to an average HbA1c reduction of 0.36%, indicating improved glycemic control. There was considerable heterogeneity (I2 = 91%) because of the clinical and methodological diversity of the included studies. Subgroup analysis showed that the younger and older age groups, shorter and longer T2DM duration, and lower and higher HbA1c baseline benefited from its use. Sensitivity analysis still showed high heterogeneity (95%-97%), reflecting clinical diversity. A narrative analysis of two studies highlighted the utility of mHealth applications in tracking diet, physical activity, and vital stats, aiding medication adherence through reminders and data sharing with healthcare providers.
CONCLUSION/RECOMMENDATIONSThis systematic review and meta-analysis showed the effectiveness of mHealth application use in achieving glycemic control among adults with Type 2 Diabetes Mellitus by improving HbA1c levels and medication adherence. Integrating mHealth applications as adjuncts in family and community medicine as part of personalized care for managing type 2 diabetes in the Philippines can help achieve glycemic control and medication adherence. Future studies should focus on longitudinal assessments, exploring cultural and linguistic factors in the Filipino context to optimize diabetes care within this specialized medical framework.
Blood Glucose Self-monitoring ; Mobile Applications ; Diabetes Mellitus
4.Construction of a 10rolGLP-1-expressing glucose-lowing Saccharomyces cerevisiae by CRISPR/Cas9 technique.
Jinrui ZHANG ; Jiaming YANG ; Yujie MENG ; Shuguang XING ; Qiqi LIU ; Minggang LI
Chinese Journal of Biotechnology 2023;39(9):3747-3756
To develop a novel glucose-lowering biomedicine with potential benefits in the treatment of type 2 diabetes, we used the 10rolGLP-1 gene previously constructed in our laboratory and the CRISPR/Cas9 genome editing technique to create an engineered Saccharomyces cerevisiae strain. The gRNA expression vector pYES2-gRNA, the donor vector pNK1-L-PGK-10rolGLP-1-R and the Cas9 expression vector pGADT7-Cas9 were constructed and co-transformed into S. cerevisiae INVSc1 strain, with the PGK-10rolGLP-1 expressing unit specifically knocked in through homologous recombination. Finally, an S. cerevisiae strain highly expressing the 10rolGLP-1 with glucose-lowering activity was obtained. SDS-PAGE and Western blotting results confirmed that two recombinant strains of S. cerevisiae stably expressed the 10rolGLP-1 and exhibited the desired glucose-lowering property when orally administered to mice. Hypoglycemic experiment results showed that the recombinant hypoglycemic S. cerevisiae strain offered a highly hypoglycemic effect on the diabetic mouse model, and the blood glucose decline was adagio, which can avoid the dangerous consequences caused by rapid decline in blood glucose. Moreover, the body weight and other symptoms such as polyuria also improved significantly, indicating that the orally hypoglycemic S. cerevisiae strain that we constructed may develop into an effective, safe, economic, practical and ideal functional food for type 2 diabetes mellitus treatment.
Mice
;
Animals
;
Saccharomyces cerevisiae/metabolism*
;
CRISPR-Cas Systems
;
Glucose/metabolism*
;
Blood Glucose/metabolism*
;
Diabetes Mellitus, Type 2/therapy*
;
Hypoglycemic Agents/metabolism*
5.Effect and mechanism of Puerariae Lobatae Radix in alleviating insulin resistance in T2DM db/db mice based on intestinal flora.
Hong-Yang ZHU ; Ye LIU ; Jia-Rong LI ; Yu-Hui LIU ; Zi-Ling RONG ; Yu-Ting LI ; Shi-Yao CHANG
China Journal of Chinese Materia Medica 2023;48(17):4693-4701
This study aimed to examine the effect and underlying mechanism of Puerariae Lobatae Radix on insulin resistance in db/db mice with type 2 diabetes mellitus(T2DM) based on the analysis of intestinal flora. Fifty db/db mice were randomly divided into a model group(M group), a metformin group(YX group), a high-dose Puerariae Lobatae Radix group(YGG group), a medium-dose Puerariae Lobatae Radix group(YGZ group), and a low-dose Puerariae Lobatae Radix group(YGD group). Another 10 db/m mice were assigned to the normal group(K group). After continuous administration for eight weeks, body weight and blood sugar of mice were measured. Enzyme linked immunosorbent assay(ELISA) was used to detect glycosylated serum protein(GSP) and fasting serum insulin(FINS), and insulin resistance index(HOMA-IR) was calculated. The histopathological changes in the pancreas were observed by HE staining. Tumor necrosis factor(TNF)-α expression in the pancreas was detected using immunohistochemistry. The structural changes in fecal intestinal flora in the K, M, and YGZ groups were detected by 16S rRNA. Western blot was used to detect the expression of farnesoid X receptor(FXR) and takeda G protein-coupled receptor 5(TGR5) in the ileum, cholesterol 7α-hydroxylase(CYP7A1) and sterol 27α-hydroxylase(CYP27A1) in the liver, and G protein-coupled receptors 41(GPR41) and 43(GPR43) in the colon. Compared with the K group, the M group showed increased body weight, blood sugar, serum GSP, fasting blood glucose(FBG), and FINS, increased HOMA-IR, inflammatory infiltration of islet cells, necrosis and degeneration of massive acinar cells, unclear boundary between islet cells and acinar cells, disturbed intestinal flora, and down-regulated FXR, TGR5, CYP7A1, CYP27A1, GPR41, and GPR43. Compared with the M group, the YX, YGG, YGZ, and YGD groups showed decreased body weight, blood sugar, serum GSP, FBG, and FINS, islet cells with intact and clumpy morphology and clear boundary, necrosis of a few acinar cells, and more visible islet cells. The intestinal flora in the YGZ group changed from phylum to genus levels, and the relative abundance of intestinal flora affecting the metabolites of intestinal flora increased. The protein expression of FXR, TGR5, CYP7A1, CYP27A1, GPR41, and GPR43 increased. The results show that Puerariae Lobatae Radix can improve the inflammatory damage of pancreatic islet cells and reduce insulin resistance in db/db mice with T2DM. The mechanism of action may be related to the increase in the abundance of Actinobacteria, Bifidobacterium, and Bacteroides in the intestinal tract and the protein expression related to metabolites of intestinal flora.
Mice
;
Animals
;
Insulin Resistance
;
Blood Glucose/metabolism*
;
Diabetes Mellitus, Type 2/genetics*
;
Pueraria/chemistry*
;
Gastrointestinal Microbiome
;
RNA, Ribosomal, 16S
;
Body Weight
;
Necrosis
6.Network Meta-analysis of oral Chinese patent medicines in treating type 2 diabetes mellitus complicated with angina pectoris of coronary heart disease.
Xu-Ming ZHANG ; Xiao-Xiao ZHAO ; Yi LIU ; Yan-Ming XIE
China Journal of Chinese Materia Medica 2023;48(18):5078-5090
Bayesian network Meta-analysis was employed to compare the efficacy of different oral Chinese patent medicines in treating type 2 diabetes mellitus with angina pectoris of coronary heart disease. Randomized controlled trial(RCT) of oral Chinese patent medicines in treating type 2 diabetes mellitus complicated with angina pectoris of coronary heart disease were retrieved from 8 Chinese and English databases including CNKI, Wanfang, VIP, SinoMed, EMbase, PubMed, Cochrane Library, and Web of Science with the time interval from inception to November 2022. The BUGSnet package in R 4.2.1 was used to conduct Meta-analysis. A total of 45 RCTs were included, involving 4 727 patients and 7 oral Chinese patent medicines. Network Meta-analysis showed that the conventio-nal western medicine combined with Chinese patent medicines improved the outcome indicators. Shexiang Baoxin Pills + conventional western medicine had the best effect on reducing the incidence of adverse cardiovascular events, and Yixinshu Capsules + conventional western medicine on reducing the frequency and duration of angina pectoris. The conventional western medicine combined with oral Chinese patent medicines can reduce blood glucose indicators. Yindan Xinnaotong Soft Capsules + conventional western medicine had the best effect on reducing fasting blood glucose(FBG), 2 hours postprandial blood glucose(PBG), and glycosylated hemoglobin(HbA1c). The conventional western medicine combined with oral Chinese patent medicines can reduce blood lipid indicators. Yixinshu Capsules + conventional western medicine had the best effect on reducing total cholesterol(TC) and low density lipoprotein-cholesterol(LDL-C), and Yindan Xinnaotong Soft Capsules + conventional western medicine on reducing triglyceride(TG). Current evidence suggests that the patients with type 2 diabetes mellitus complicated with angina pectoris of coronary heart disease could reasonably choose oral Chinese patent medicines on the basis of routine antiplatelet, anticoagulant, hypoglycemic, and antihypertensive therapies, which could reduce the incidence of adverse cardiovascular events, alleviate the symptoms of angina pectoris, and reduce the glucose and lipid metabolism indicators. Shexiang Baoxin Pills + conventional treatment and Yixinshu Capsules + conventional western medicine have better effect on angina pectoris, Yindan Xinnaotong Soft Capsules + conventional western medicine on lowering blood glucose, and Yindan Xinnaotong Soft Capsules + conventional western medicine and Yixinshu Capsules + conventional western medicine on reducing blood lipid. Due to the lack of direct comparative results between Chinese patent medicines and other factors, high-quality studies remain to be carried out for further verification.
Humans
;
Nonprescription Drugs
;
Network Meta-Analysis
;
Diabetes Mellitus, Type 2/drug therapy*
;
Bayes Theorem
;
Blood Glucose
;
Angina Pectoris/drug therapy*
;
Coronary Disease/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Capsules
;
Lipids
;
Cholesterol
7.Effect of Polygonati Rhizoma in improving pyroptosis injury of diabetic macroangiopathy via NLRP3/caspase-1/GSDMD pathway.
Xin-Ying FU ; Tian-Song SUN ; Cong-Xu ZHU ; Shi-da KUANG ; Jun TAN ; Dan CHEN ; Qing-Hu HE ; Lu-Mei LIU
China Journal of Chinese Materia Medica 2023;48(24):6702-6710
This study aims to explore the influence of Polygonati Rhizoma on the pyroptosis in the rat model of diabetic macroangiopathy via the NOD-like receptor thermal protein domain associated protein 3(NLRP3)/cysteinyl aspartate specific proteinase-1(caspase-1)/gasdermin D(GSDMD) pathway. The rat model of diabetes was established by intraperitoneal injection of streptozotocin(STZ) combined with a high-fat, high-sugar diet. The blood glucose meter, fully automated biochemical analyzer, hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay, immunofluorescence, immunohistochemistry, and Western blot were employed to measure blood glucose levels, lipid levels, vascular thickness, inflammatory cytokine levels, and expression levels of pyroptosis-related proteins. The mechanism of pharmacological interventions against the injury in the context of diabetes was thus explored. The results demonstrated the successful establishment of the model of diabetes. Compared with the control group, the model group showed elevated levels of fasting blood glucose, total cholesterol(TC), triglycerides(TG) and low-density lipoprotein cholesterol(LDL-c), lowered level of high-density lipoprotein cholesterol(HDL-c), thickened vascular intima, and elevated serum and aorta levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β) and interleukin-18(IL-18). Moreover, the model group showed increased NLRP3 inflammasomes and up-regulated levels of caspase-1 and GSDMD in aortic vascular cells. Polygonati Rhizoma intervention reduced blood glucose and lipid levels, inhibited vascular thickening, lowered the levels of TNF-α, IL-1β, IL-18 in the serum and aorta, attenuated NLRP3 inflammasome expression, and down-regulated the expression levels of caspase-1 and GSDMD, compared with the model group. In summary, Polygonati Rhizoma can slow down the progression of diabetic macroangiopathy by inhibiting pyroptosis and alleviating local vascular inflammation.
Animals
;
Rats
;
Caspase 1/genetics*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Interleukin-18
;
Blood Glucose
;
Pyroptosis
;
Tumor Necrosis Factor-alpha
;
Diabetes Complications
;
Vascular Diseases
;
Inflammasomes
;
Cholesterol
;
Lipids
;
Diabetes Mellitus
8.Research advances in neuromodulation techniques for blood glucose regulation and diabetes intervention.
Journal of Biomedical Engineering 2023;40(6):1227-1234
Diabetes and its complications that seriously threaten the health and life of human, has become a public health problem of global concern. Glycemic control remains a major focus in the treatment and management of patients with diabetes. The traditional lifestyle interventions, drug therapies, and surgeries have benefited many patients with diabetes. However, due to problems such as poor patient compliance, drug side effects, and limited surgical indications, there are still patients who fail to effectively control their blood glucose levels. With the development of bioelectronic medicine, neuromodulation techniques have shown great potential in the field of glycemic control and diabetes intervention with its unique advantages. This paper mainly reviewed the research advances and latest achievements of neuromodulation technologies such as peripheral nerve electrical stimulation, ultrasound neuromodulation, and optogenetics in blood glucose regulation and diabetes intervention, analyzed the existing problems and presented prospects for the future development trend to promote clinical research and application of neuromodulation technologies in the treatment of diabetes.
Humans
;
Blood Glucose
;
Transcranial Magnetic Stimulation/methods*
;
Transcranial Direct Current Stimulation/methods*
;
Transcutaneous Electric Nerve Stimulation
;
Diabetes Mellitus/therapy*
9.Clinical characteristics and genetic analysis of a child with specific type of diabetes mellitus caused by missense mutation of GATA6 gene.
Lingwen YING ; Yu DING ; Juan LI ; Qianwen ZHANG ; Guoying CHANG ; Tingting YU ; Jian WANG ; Zhongqun ZHU ; Xiumin WANG
Journal of Zhejiang University. Medical sciences 2023;52(6):732-737
A 2-year-old boy was admitted to Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine in Nov 30th, 2018, due to polydipsia, polyphagia, polyuria accompanied with increased glucose levels for more than 2 weeks. He presented with symmetrical short stature [height 81 cm (-2.2 SD), weight 9.8 kg (-2.1 SD), body mass index 14.94 kg/m2 (P10-P15)], and with no special facial or physical features. Laboratory results showed that the glycated hemoglobin A1c was 14%, the fasting C-peptide was 0.3 ng/mL, and the islet autoantibodies were all negative. Oral glucose tolerance test showed significant increases in both fasting and postprandial glucose, but partial islet functions remained (post-load C-peptide increased 1.43 times compared to baseline). A heterozygous variant c.1366C>T (p.R456C) was detected in GATA6 gene, thereby the boy was diagnosed with a specific type of diabetes mellitus. The boy had congenital heart disease and suffered from transient hyperosmolar hyperglycemia after a patent ductus arteriosus surgery at 11 months of age. Insulin replacement therapy was prescribed, but without regular follow-up thereafter. The latest follow-up was about 3.5 years after the diagnosis of diabetes when the child was 5 years and 11 months old, with the fasting blood glucose of 6.0-10.0 mmol/L, and the 2 h postprandial glucose of 17.0-20.0 mmol/L.
Male
;
Child
;
Humans
;
Child, Preschool
;
Infant
;
Diabetes Mellitus, Type 2/complications*
;
Mutation, Missense
;
C-Peptide/genetics*
;
China
;
Insulin/genetics*
;
Glucose
;
Blood Glucose
;
GATA6 Transcription Factor/genetics*
10.Stress hyperglycemia and nutritional therapy.
Chinese Critical Care Medicine 2023;35(11):1147-1149
Stress induced hyperglycemia is the body's protect response against strong (patho-physiological and/or psychological) stress, sometimes the blood glucose level is too high due to out of the body's adjustment. Renal glucose threshold (about 9 mmol/L) is a window of glucose leak from capillary to interstitial tissue. It is important to keep blood glucose level < 9 mmol/L, for reducing vascular sclerosis as well as organs hypoperfusion, meanwhile pay attention to preventing more dangerous hypoglycemia. Glucose, as the main energy substrate, should be daily supply and its metabolism should be monitored. We used to talk "nutritional support". Support is conform the physiological ability of host, but therapy is to coordinate and change pathophysiology. So, nutritional support is not equal to nutritional therapy. For critical ill patients, we need to emphasize "nutritional therapy", i.e, do not give nutritional treatment without metabolic monitoring, make up for deficiencies and avoid metabolites overloading, rational adjustment to protect and coordinate organs function.
Humans
;
Blood Glucose/metabolism*
;
Critical Illness/therapy*
;
Hyperglycemia/therapy*
;
Nutritional Support
;
Glucose


Result Analysis
Print
Save
E-mail