1.Health Information Technology Trends in Social Media: Using Twitter Data
Jisan LEE ; Jeongeun KIM ; Yeong Joo HONG ; Meihua PIAO ; Ahjung BYUN ; Healim SONG ; Hyeong Suk LEE
Healthcare Informatics Research 2019;25(2):99-105
OBJECTIVES: This study analyzed the health technology trends and sentiments of users using Twitter data in an attempt to examine the public's opinions and identify their needs. METHODS: Twitter data related to health technology, from January 2010 to October 2016, were collected. An ontology related to health technology was developed. Frequently occurring keywords were analyzed and visualized with the word cloud technique. The keywords were then reclassified and analyzed using the developed ontology and sentiment dictionary. Python and the R program were used for crawling, natural language processing, and sentiment analysis. RESULTS: In the developed ontology, the keywords are divided into ‘health technology‘ and ‘health information‘. Under health technology, there are are six subcategories, namely, health technology, wearable technology, biotechnology, mobile health, medical technology, and telemedicine. Under health information, there are four subcategories, namely, health information, privacy, clinical informatics, and consumer health informatics. The number of tweets about health technology has consistently increased since 2010; the number of posts in 2014 was double that in 2010, which was about 150 thousand posts. Posts about mHealth accounted for the majority, and the dominant words were ‘care‘, ‘new‘, ‘mental‘, and ‘fitness‘. Sentiment analysis by subcategory showed that most of the posts in nearly all subcategories had a positive tone with a positive score. CONCLUSIONS: Interests in mHealth have risen recently, and consequently, posts about mHealth were the most frequent. Examining social media users' responses to new health technology can be a useful method to understand the trends in rapidly evolving fields.
Biomedical Technology
;
Biotechnology
;
Boidae
;
Data Mining
;
Informatics
;
Medical Informatics
;
Methods
;
Natural Language Processing
;
Privacy
;
Public Opinion
;
Social Media
;
Telemedicine
2.Predicting genetic modification targets based on metabolic network analysis--a review.
Peishun LI ; Hongwu MA ; Xueming ZHAO ; Tao CHEN
Chinese Journal of Biotechnology 2016;32(1):1-13
Construction of artificial cell factory to produce specific compounds of interest needs wild strain to be genetically engineered. In recent years, with the reconstruction of many genome-scale metabolic networks, a number of methods have been proposed based on metabolic network analysis for predicting genetic modification targets that lead to overproduction of compounds of interest. These approaches use constraints of stoichiometry and reaction reversibility in genome-scale models of metabolism and adopt different mathematical algorithms to predict modification targets, and thus can discover new targets that are difficult to find through traditional intuitive methods. In this review, we introduce the principle, merit, demerit and application of various strain optimization methods in detail. The main problems in existing methods and perspectives on this emerging research field are also discussed, aiming to provide guidance to choose the appropriate methods according to different types of products and the reliability of the predicted results.
Algorithms
;
Biotechnology
;
methods
;
Computer Simulation
;
Genome
;
Industrial Microbiology
;
Metabolic Engineering
;
methods
;
Metabolic Networks and Pathways
;
Models, Theoretical
;
Reproducibility of Results
3.Genome editing of industrial microorganism.
Chinese Journal of Biotechnology 2015;31(3):338-350
Genome editing is defined as highly-effective and precise modification of cellular genome in a large scale. In recent years, such genome-editing methods have been rapidly developed in the field of industrial strain improvement. The quickly-updating methods thoroughly change the old mode of inefficient genetic modification, which is "one modification, one selection marker, and one target site". Highly-effective modification mode in genome editing have been developed including simultaneous modification of multiplex genes, highly-effective insertion, replacement, and deletion of target genes in the genome scale, cut-paste of a large DNA fragment. These new tools for microbial genome editing will certainly be applied widely, and increase the efficiency of industrial strain improvement, and promote the revolution of traditional fermentation industry and rapid development of novel industrial biotechnology like production of biofuel and biomaterial. The technological principle of these genome-editing methods and their applications were summarized in this review, which can benefit engineering and construction of industrial microorganism.
Biotechnology
;
Fermentation
;
Genetic Engineering
;
methods
;
Genome, Microbial
;
Industrial Microbiology
4.The application of biotechnology in medicinal plants breeding research in China.
He-Ping HUANG ; Jin-Cai LI ; Lu-Qi HUANG ; Dian-Lei WANG ; Peng HUANG ; Jiu-Sheng NIE
Chinese journal of integrative medicine 2015;21(7):551-560
Breeding is not only an important area of medicinal plants research but also the foundation for the superior varieties acquirement of medicinal plants. The rise of modern biotechnology provides good opportunities and new means for medicinal plants breeding research in China. Biotechnology shows its technical advantages and new development prospects in breeding of new medicinal plants varieties with high and stable yield, good quality, as well as stress-resistance. In this paper, we describe recent advances, problems, and development prospects about the application of modern biotechnology in medicinal plants breeding research in China.
Biotechnology
;
methods
;
Breeding
;
China
;
Plants, Medicinal
;
genetics
;
Research
;
Tissue Culture Techniques
5.Optimization of expression conditions of an induction strategy for improving liver targeted interferon (IFN-CSP) production in E. coli.
Yanting HUANG ; Xuemei LU ; Jie WANG ; Xiaobao JIN ; Jiayong ZHU
Journal of Biomedical Engineering 2014;31(2):432-438
Expression conditions of induction strategies for the cytoplasmic inclusion bodies (IBs) production of liver targeted interferon IFN-CSP by recombinant Escherichia coli (E. coli) BL21 (DE3) were optimized in shake-flask cultures in this study. The factors of the optimized protocol included in the present study were pH, inducer IPTG (isopropyl beta-D-thiogalactoside) concentration, culture growth temperature, incubation time and induction point. The effects of those factors were investigated by 'single variable at a time' method, aimed to analyze characterization of the recombinant strain. Orthogonal experimental design was further used to optimize the above critical factors for IFN-CSP production. According to the expression optimization result, it was confirmed that the main influence factors were cell density and induction temperature. The IFN-CSP gene expression optimized conditions were: pH value of the culture medium was 6.0, culture temperature 37 degrees C, adding IPTG to final concentration 0.4 mmol/L when the recombinant strain growth density OD600 achieved 0.8 and induction time 4 h. At this point, the IBs represented 74.3% of the total cellular protein. Compared with the non-optimized condition, IFN-CSP production obtained in optimized induction strategies were increased by approx. 1.2-fold. The optimized induction strategy yielded 688.8 mg/L of IFN-CSP, providing experimental data to study the biology activity and productive technology of IFN-CSP.
Biotechnology
;
methods
;
Cell Culture Techniques
;
methods
;
Culture Media
;
chemistry
;
Escherichia coli
;
metabolism
;
Gene Expression
;
Interferons
;
biosynthesis
;
Liver
;
Temperature
6.Synergistic mechanism of steam explosion combined with laccase treatment for straw delignification.
Chinese Journal of Biotechnology 2014;30(6):911-919
Components separation is the key technology in biorefinery. Combination of steam explosion and laccase was used, and synergistic effect of the combined pretreatment was evaluated in terms of physical structure, chemical components and extraction of lignin. The results showed that steam explosion can destroy the rigid structure and increase the specific surface area of straw, which facilitated the laccase pretreatment. The laccase pretreatment can modify the lignin structure based on the Fourier transform infrared test, as a result the delignification of straw was enhanced. Nuclei Growth model with a time dependent rate constant can describe the delignification, and the kinetics parameters indicated that the combined pretreatment improved the reaction sites and made the delignification reaction more sensitive to temperature. The combined pretreatment enhanced delignification, and can be a promising technology as an alternative to the existing pretreatment.
Biotechnology
;
methods
;
Laccase
;
chemistry
;
Lignin
;
chemistry
;
Plant Stems
;
chemistry
;
Steam
7.Phenolic foam prepared by lignin from a steam-explosion derived biorefinery of corn stalk.
Chinese Journal of Biotechnology 2014;30(6):901-910
To increase the integral economic effectiveness, biorefineries of lignocellulosic materials should not only utilize carbohydrates hydrolyzed from cellulose and hemicellulose but also use lignin. We used steam-exploded corn stalk as raw materials and optimized the temperature and alkali concentration in the lignin extraction process to obtain lignin liquor with higher yield and purity. Then the concentrated lignin liquor was used directly to substitute phenol for phenolic foam preparation and the performances of phenolic foam were characterized by microscopic structure analysis, FTIR, compression strength and thermal conductivity detection. The results indicated that, when steam-exploded corn stalk was extracted at 120 degrees C for 2 h by 1% NaOH with a solid to liquid ratio of 1:10, the extraction yield of lignin was 79.67%. The phenolic foam prepared from the concentrated lignin liquor showed higher apparent density and compression strength with the increasing substitution rate of lignin liquor. However, there were not significant differences of thermal conductivity and flame retardant properties by the addition of lignin, which meant that the phenolic foam substituted by lignin liquor was approved for commercial application. This study, which uses alkali-extracted lignin liquor directly for phenolic foam preparation, provides a relatively simple way for utilization of lignin and finally increases the overall commercial operability ofa lignocellulosic biorefinery derived by steam explosion.
Biotechnology
;
methods
;
Chemical Fractionation
;
Hot Temperature
;
Lignin
;
chemistry
;
Phenols
;
chemistry
;
Plant Stems
;
chemistry
;
Steam
;
Zea mays
;
chemistry
8.Low temperature plasma technology for biomass refinery.
Chinese Journal of Biotechnology 2014;30(5):743-752
Biorefinery that utilizes renewable biomass for production of fuels, chemicals and bio-materials has become more and more important in chemical industry. Recently, steam explosion technology, acid and alkali treatment are the main biorefinery treatment technologies. Meanwhile, low temperature plasma technology has attracted extensive attention in biomass refining process due to its unique chemical activity and high energy. We systemically summarize the research progress of low temperature plasma technology for pretreatment, sugar platflow, selective modification, liquefaction and gasification in biomass refinery. Moreover, the mechanism of low temperature plasma in biorefinery and its further development were also discussed.
Biomass
;
Biotechnology
;
methods
;
Biotransformation
;
Chemical Industry
;
Cold Temperature
;
Plasma Gases
9.Application of process engineering to remove lignocellulose fermentation inhibitors.
Lan WANG ; Menglei XIA ; Hongzhang CHEN
Chinese Journal of Biotechnology 2014;30(5):716-725
Fermentation inhibitors are toxic to cells, which is one of the bottlenecks for lignocellulose bio-refinery process. How to remove those inhibitors serves a key role in the bioconversion of lignocellulose. This article reviews the sources and the types of the inhibitors, especially the updated removal strategies including physical methods, chemical methods, biological methods and inhibitor-tolerant strain construction strategies. Based on these, we introduce a new bio-refinery model named "fractional conversion", which reduces the production of inhibitors at pretreatment stage, and a novel in situ detoxification method named "fermentation promoter exploitation technology". This review could provide new research ideas on the removal of fermentation inhibitors.
Biotechnology
;
methods
;
Biotransformation
;
Fermentation
;
Lignin
;
chemistry
10.Optimization of synthetic pathway and fermentation process of yeast cell factories for production of oleanoic acid.
Dong WANG ; Bei-Bei WANG ; Yi LIU ; Ming-Yu SHI ; Dong-Guang XIAO ; Lu-Qi HUANG ; Zhu-Bo DAI ; Xue-Li ZHANG
China Journal of Chinese Materia Medica 2014;39(14):2640-2645
OBJECTIVETo optimize the synthetic pathway and fermentation process of yeast cell factories for production of oleanoic acid.
METHODUsing the DNA assembler method, one copy of Glycyrrhiza glabra beta-amyrin synthase (GgbAS), Medicago truncatula oleanolic acid synthase (MtOAS) and Arabidopsis thaliana cytochrome P450 reductase 1 (AtCPR1) genes were introduced into Saccharomyces cerevisiae strain BY-OA, resulting in strain BY-20A. YPD medium with different glucose concentration were then used to cultivate strain BY-2OA.
RESULTIncreasing gene copies of GgbAS, MtOAS and AtCPR1 resulted in increased beta-amyrin and oleanolic acid production. The strain BY-2OA produced 136.5 mg x L(-1) beta-amyrin and 92.5 mg x L(-1) oleanolic acid, which were 54% and 30% higher than the parent strain BY-OA. Finally, the titer of oleanolic acid increased to 165.7 mg x L(-1) when cultivated in YPD medium with 40 mg x L(-1) glucose.
CONCLUSIONProduction of oleanoic acid increased significantly in the yeast strain BY-2OA, which can provide the basis for creating an alternative way for production of oleanoic acid in place of extraction from plant sources.
Biomass ; Biotechnology ; methods ; Dose-Response Relationship, Drug ; Fermentation ; Glucose ; pharmacology ; Oleanolic Acid ; biosynthesis ; Saccharomyces cerevisiae ; cytology ; drug effects ; metabolism

Result Analysis
Print
Save
E-mail