1.Engineering of CmpLs enhances L-glutamate production of Corynebacterium glutamicum.
Xingtao ZUO ; Shasha ZHONG ; Ningyun CAI ; Tuo SHI ; Zhidan ZHANG ; Yuantao LIU ; Jiao LIU ; Depei WANG ; Jiuzhou CHEN ; Ping ZHENG
Chinese Journal of Biotechnology 2025;41(1):271-287
The efficient production of L-glutamate is dependent on the product's rapid efflux, hence researchers have recently concentrated on artificially modifying its transport system and cell membrane wall structure. Considering the unique composition and structure of the cell wall of Corynebacterium glutamicum, we investigated the effects of CmpLs on L-glutamate synthesis and transport in SCgGC7, a constitutive L-glutamate efflux strain. First, the knockout strains of CmpLs were constructed, and it was confirmed that the deletion of CmpL1 and CmpL4 significantly improved the performance of L-glutamate producers. Next, temperature-sensitive L-glutamate fermentation with the CmpL1 and CmpL4 knockout strains were carried out in 5 L bioreactors, where the knockout strains showcased temperature-sensitive characteristics and enhanced capacities for L-glutamate production under high temperatures. Notably, the CmpL1 knockout strain outperformed the control strain in terms of L-glutamate production, showing production and yield increases of 69.2% and 55.3%, respectively. Finally, the intracellular and extracellular metabolites collected at the end of the fermentation process were analyzed. The modification of CmpLs greatly improved the L-glutamate excretion and metabolic flux for both L-glutamate production and transport. Additionally, the CmpL1 knockout strain showed decreased accumulation of downstream metabolites of L-glutamate and intermediate metabolites of tricarboxylic acid (TCA) cycle, which were consistent with its high L-glutamate biosynthesis capacity. In addition to offering an ideal target for improving the stability and performance of the industrial strains for L-glutamate production, the functional complementarity and redundancy of CmpLs provide a novel target and method for improving the transport of other metabolites by modification of the cell membrane and cell wall structures in C. glutamicum.
Corynebacterium glutamicum/genetics*
;
Glutamic Acid/biosynthesis*
;
Fermentation
;
Metabolic Engineering
;
Bacterial Proteins/metabolism*
;
Bioreactors/microbiology*
;
Gene Knockout Techniques
2.Optimization of fermentation processes in intelligent biomanufacturing: on online monitoring, artificial intelligence, and digital twin technologies.
Jianye XIA ; Dongjiao LONG ; Min CHEN ; Anxiang CHEN
Chinese Journal of Biotechnology 2025;41(3):1179-1196
As a strategic emerging industry, biomanufacturing faces core challenges in achieving precise optimization and efficient scale-up of fermentation processes. This review focuses on two critical aspects of fermentation-real-time sensing and intelligent control-and systematically summarizes the advancements in online monitoring technologies, artificial intelligence (AI)-driven optimization strategies, and digital twin applications. First, online monitoring technologies, ranging from conventional parameters (e.g., temperature, pH, and dissolved oxygen) to advanced sensing systems (e.g., online viable cell sensors, spectroscopy, and exhaust gas analysis), provide a data foundation for real-time microbial metabolic state characterization. Second, conventional static control relying on expert experience is evolving toward AI-driven dynamic optimization. The integration of machine learning technologies (e.g., artificial neural networks and support vector machines) and genetic algorithms significantly enhances the regulation efficiency of feeding strategies and process parameters. Finally, digital twin technology, integrating real-time sensing data with multi-scale models (e.g., cellular metabolic kinetics and reactor hydrodynamics), offers a novel paradigm for lifecycle optimization and rational scale-up of fermentation. Future advancements in closed-loop control systems based on intelligent sensing and digital twin are expected to accelerate the industrialization of innovative achievements in synthetic biology and drive biomanufacturing toward higher efficiency, intelligence, and sustainability.
Artificial Intelligence
;
Fermentation
;
Bioreactors/microbiology*
;
Neural Networks, Computer
;
Algorithms
;
Biotechnology/methods*
3.Construction and fermentation regulation of strains with high yields of echinocandin B.
Kun NIU ; Hongwei CAI ; Yixin YE ; Jinyue XU ; Zhiqiang LIU ; Yuguo ZHENG
Chinese Journal of Biotechnology 2025;41(4):1455-1466
Echinocandin B (ECB) is a key precursor of the antifungal drug anidulafungin. It is a secondary metabolite of Aspergillus nidulans, and its titer in fermentation is significantly affected by the ECB synthesis pathway and cell morphology. In this study, the key genes related to the transcription activation, hydroxylation, and cell morphology during ECB biosynthesis were investigated to increase the fermentation titer of ECB and to change the cell morphology of Aspergillus nidulans to reduce the viscosity of the fermentation broth. The results indicated that after overexpression of ecdB and ecdK, the ECB titer increased by 25.8% and 23.7%, respectively, compared with that of the wild-type strain, reaching (2 030.5±99.2) mg/L and (1 996.4±151.4) mg/L. However, the deletion of fksA associated with cell wall synthesis resulted in damage to the cell wall, affecting strain growth and product synthesis. The engineered strain overexpressing ecdB was fermented in a 50-L bioreactor, in which the ECB titer reached 2 234.5 mg/L. The findings laid a research foundation for the subsequent metabolic engineering of this strain.
Fermentation
;
Aspergillus nidulans/genetics*
;
Echinocandins/genetics*
;
Bioreactors/microbiology*
;
Fungal Proteins/biosynthesis*
;
Metabolic Engineering
4.Construction and fermentation optimization of a hydroxyectoine-producing Escherichia coli strain.
Hairui TONG ; Hao ZHANG ; Weiwei HUANG ; Qi ZHANG ; Yibin QIU ; Sha LI
Chinese Journal of Biotechnology 2025;41(9):3448-3458
Hydroxyectoine, a vital compatible solute, is widely utilized in cosmetics, food, pharmaceutical industries, and biologics. However, the current microbial fermentation methods for hydroxyectoine production face challenges including insufficient precursor supply and low yields. Therefore, developing engineering microbial strains capable of efficiently synthesizing hydroxyectoine is of great significance. In this study, we first constructed a high-yield ectoine-producing strain ECT04 by multi-copy integration of the ectoine synthesis genes ectABC into the pseudogene loci of Escherichia coli MG1655(DE3), achieving an ectoine titer of 6.03 g/L. Subsequently, we employed plasmids with varying copy numbers to express ectD from Chromohalobacter salexigens to enable the conversion for hydroxyectoine production. We further investigated the effects of promoter, co-substrate ɑ-ketoglutarate, Fe2+ concentration, and dissolved oxygen on hydroxyectoine synthesis. Through fed-batch fermentation in a 7-L bioreactor, we significantly enhanced the hydroxyectoine production efficiency, attaining a final titer of 8.58 g/L and a productivity of 0.24 g/(L·h). This work successfully achieved the de novo synthesis of hydroxyectoine in E. coli, laying a foundation for the efficient bioproduction of this compound.
Escherichia coli/genetics*
;
Fermentation
;
Amino Acids, Diamino/biosynthesis*
;
Bioreactors/microbiology*
;
Metabolic Engineering/methods*
;
Chromohalobacter/genetics*
;
Plasmids/genetics*
5.Recent advances in the structure and function of microbial community in anaerobic granular sludge.
Changjie GUO ; Weigang WANG ; Yayi WANG
Chinese Journal of Biotechnology 2023;39(11):4517-4533
Anaerobic granular sludge (AnGS), a self-immobilized aggregate containing various functional microorganisms, is considered as a promising green process for wastewater treatment. AnGS has the advantages of high volume loading rate, simple process and low excess sludge generation, thus shows great technological and economical potentials. This review systematically summarizes the recent advances of the microbial community structure and function of anaerobic granular sludge, and discusses the factors affecting the formation and stability of anaerobic granular sludge from the perspective of microbiology. Moreover, future research directions of AnGS are prospected. This review is expected to facilitate the research and engineering application of AnGS.
Sewage/chemistry*
;
Waste Disposal, Fluid
;
Anaerobiosis
;
Microbiota
;
Water Purification
;
Bioreactors/microbiology*
6.Functional analysis of functional membrane microdomains in the biosynthesis of menaquinone-7.
Yajun DONG ; Shixiu CUI ; Yanfeng LIU ; Jianghua LI ; Guocheng DU ; Xueqin LÜ ; Long LIU
Chinese Journal of Biotechnology 2023;39(6):2215-2230
Functional membrane microdomains (FMMs) that are mainly composed of scaffold proteins and polyisoprenoids play important roles in diverse cellular physiological processes in bacteria. The aim of this study was to identify the correlation between MK-7 and FMMs and then regulate the MK-7 biosynthesis through FMMs. Firstly, the relationship between FMMs and MK-7 on the cell membrane was determined by fluorescent labeling. Secondly, we demonstrated that MK-7 is a key polyisoprenoid component of FMMs by analyzing the changes in the content of MK-7 on cell membrane and the changes in the membrane order before and after destroying the integrity of FMMs. Subsequently, the subcellular localization of some key enzymes in MK-7 synthesis was explored by visual analysis, and the intracellular free pathway enzymes Fni, IspA, HepT and YuxO were localized to FMMs through FloA to achieve the compartmentalization of MK-7 synthesis pathway. Finally, a high MK-7 production strain BS3AT was successfully obtained. The production of MK-7 reached 300.3 mg/L in shake flask and 464.2 mg/L in 3 L fermenter.
Bacillus subtilis/metabolism*
;
Vitamin K 2/metabolism*
;
Bioreactors/microbiology*
;
Membrane Microdomains/metabolism*
7.Enhanced nitrogen removal by bioelectrochemical coupling anammox and characteristics of microbial communities.
Lai XIE ; Min YANG ; Enzhe YANG ; Zhihua LIU ; Xin GENG ; Hong CHEN
Chinese Journal of Biotechnology 2023;39(7):2719-2729
To investigate the bioelectrochemical enhanced anaerobic ammonia oxidation (anammox) nitrogen removal process, a bioelectrochemical system with coupled anammox cathode was constructed using a dual-chamber microbial electrolysis cell (MEC). Specifically, a dark incubation batch experiment was conducted at 30 ℃ with different influent total nitrogen concentrations under an applied voltage of 0.2 V, and the enhanced denitrification mechanism was investigated by combining various characterization methods such as cyclic voltammetry, electrochemical impedance spectroscopy and high-throughput sequencing methods. The results showed that the total nitrogen removal rates of 96.9%±0.3%, 97.3%±0.4% and 99.0%±0.3% were obtained when the initial total nitrogen concentration was 200, 300 and 400 mg/L, respectively. In addition, the cathode electrode biofilm showed good electrochemical activity. High-throughput sequencing results showed that the applied voltage enriched other denitrifying functional groups, including Denitratisoma, Limnobacter, and ammonia oxidizing bacteria SM1A02 and Anaerolineaceae, Nitrosomonas europaea and Nitrospira, besides the anammox bacteria. These electrochemically active microorganisms comprised of ammonium oxidizing exoelectrogens (AOE) and denitrifying electrotrophs (DNE). Together with anammox bacteria Candidatus Brocadia, they constituted the microbial community structure of denitrification system. Enhanced direct interspecies electron transfer between AOE and DNE was the fundamental reason for the further improvement of the total nitrogen removal rate of the system.
Denitrification
;
Wastewater
;
Anaerobic Ammonia Oxidation
;
Nitrogen
;
Oxidation-Reduction
;
Bioreactors/microbiology*
;
Ammonium Compounds
;
Bacteria/genetics*
;
Microbiota
;
Sewage
8.Denitrifying phosphate accumulating organisms and its mechanism of nitrogen and phosphorus removal.
Chunxia ZHENG ; Cerong WANG ; Manman ZHANG ; Qifeng WU ; Mengping CHEN ; Chenyu DING ; Tengxia HE
Chinese Journal of Biotechnology 2023;39(3):1009-1025
Water eutrophication poses great threats to protection of water environment. Microbial remediation of water eutrophication has shown high efficiency, low consumption and no secondary pollution, thus becoming an important approach for ecological remediation. In recent years, researches on denitrifying phosphate accumulating organisms and their application in wastewater treatment processes have received increasing attention. Different from the traditional nitrogen and phosphorus removal process conducted by denitrifying bacteria and phosphate accumulating organisms, the denitrifying phosphate accumulating organisms can simultaneously remove nitrogen and phosphorus under alternated anaerobic and anoxic/aerobic conditions. It is worth noting that microorganisms capable of simultaneously removing nitrogen and phosphorus absolutely under aerobic conditions have been reported in recent years, but the mechanisms remain unclear. This review summarizes the species and characteristics of denitrifying phosphate accumulating organisms and the microorganisms capable of performing simultaneous nitrification-denitrification and phosphorous removal. Moreover, this review analyzes the relationship between nitrogen removal and phosphorus removal and the underlying mechanisms, discusses the challenges of denitrifying phosphorus removal, and prospects future research directions, with the aim to facilitate process improvement of denitrifying phosphate accumulating organisms.
Phosphorus
;
Phosphates
;
Wastewater
;
Denitrification
;
Waste Disposal, Fluid
;
Nitrogen
;
Bioreactors/microbiology*
;
Nitrification
;
Sewage
9.Mechanism of trehalose-enhanced metabolism of heterotrophic nitrification-aerobic denitrification community under high-salt stress.
Lei GUO ; Pengying XIAO ; Longshan LI ; Shuang CHEN ; Gang YUAN
Chinese Journal of Biotechnology 2022;38(12):4536-4552
Heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria are aerobic microorganisms that can remove nitrogen under high-salt conditions, but their performance in practical applications are not satisfactory. As a compatible solute, trehalose helps microorganisms to cope with high salt stress by participating in the regulation of cellular osmotic pressure, and plays an important role in promoting the nitrogen removal efficiency of microbial populations in the high-salt environment. We investigated the mechanism of exogenous-trehalose-enhanced metabolism of HN-AD community under high-salt stress by starting up a membrane aerobic biofilm reactor (MABR) to enrich HN-AD bacteria, and designed a C150 experimental group with 150 μmol/L trehalose addition and a C0 control group without trehalose. The reactor performance and the community structure showed that NH4+-N, total nitrogen (TN) and chemical oxygen demand (COD) removal efficiency were increased by 29.7%, 28.0% and 29.1%, respectively. The total relative abundance of salt-tolerant HN-AD bacteria (with Acinetobacter and Pseudofulvimonas as the dominant genus) in the C150 group reached 66.8%, an 18.2% increase compared with that of the C0 group. This demonstrated that trehalose addition promoted the enrichment of salt-tolerant HN-AD bacteria in the high-salt environment to enhance the nitrogen removal performance of the system. In-depth metabolomics analysis showed that the exogenous trehalose was utilized by microorganisms to improve proline synthesis to increase resistance to high-salt stress. By regulating the activity of cell proliferation signaling pathways (cGMP-PKG, PI3K-Akt), phospholipid metabolism pathway and aminoacyl-tRNA synthesis pathway, the abundances of phosphoethanolamine, which was one of the glycerophospholipid metabolites, and purine and pyrimidine were up-regulated to stimulate bacterial aggregation and cell proliferation to promote the growth of HN-AD bacteria in the high-salt environment. Meanwhile, the addition of trehalose accelerated the tricarboxylic acid (TCA) cycle, which might provide more electron donors and energy to the carbon and nitrogen metabolisms of HN-AD bacteria and promote the nitrogen removal performance of the system. These results may facilitate using HN-AD bacteria in the treatment of high-salt and high-nitrogen wastewater.
Nitrification
;
Denitrification
;
Trehalose
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Heterotrophic Processes
;
Salt Stress
;
Nitrogen/metabolism*
;
Aerobiosis
;
Bioreactors/microbiology*
10.Numerical simulation and optimization of impeller combination used in stirred bioreactor.
Ning DING ; Chao LI ; Li BAI ; Meijin GUO ; Yingping ZHUANG ; Siliang ZHANG
Chinese Journal of Biotechnology 2020;36(6):1209-1215
Bioreactors have been central in monoclonal antibodies and vaccines manufacturing by mammalian cells in suspension culture. Numerical simulation of five impeller combinations in a stirred bioreactor was conducted, and characteristics of velocity vectors, distributions of gas hold-up, distributions of shear rate in the bioreactor using 5 impeller combinations were numerically elucidated. In addition, genetically engineered CHO cells were cultivated in bioreactor installed with 5 different impeller combinations in fed-batch culture mode. The cell growth and antibody level were directly related to the maximum shear rate in the bioreactor, and the highest viable cell density and the peak antibody level were achieved in FBMI3 impeller combination, indicating that CHO cells are sensitive to shear force produced by impeller movement when cells were cultivated in bioreactor at large scale, and the maximum shear rate would play key roles in scaling-up of bioreactor at industrial scale.
Animals
;
Batch Cell Culture Techniques
;
Bioreactors
;
standards
;
CHO Cells
;
Cell Count
;
Computer Simulation
;
Cricetinae
;
Cricetulus
;
Industrial Microbiology
;
instrumentation
;
methods

Result Analysis
Print
Save
E-mail