1.Design and validation of a novel knee biomechanical test method.
Junrui WANG ; Zhiping ZHAO ; Chengteng JIANG ; Chuang NIE ; Quanxing SHI ; Meng LIU ; Jianwen GU
Journal of Biomedical Engineering 2023;40(6):1185-1191
A novel structural dynamics test method and device were designed to test the biomechanical effects of dynamic axial loading on knee cartilage and meniscus. Firstly, the maximum acceleration signal-to-noise ratio of the experimental device was calculated by applying axial dynamic load to the experimental device under unloaded condition with different force hammers. Then the experimental samples were divided into non-specimen group (no specimen loaded), sham specimen group (loaded with polypropylene samples) and bovine knee joint specimen group (loaded with bovine knee joint samples) for testing. The test results show that the experimental device and method can provide stable axial dynamic load, and the experimental results have good repeatability. The final results confirm that the dynamic characteristics of experimental samples can be distinguished effectively by this device. The experimental method proposed in this study provides a new way to further study the biomechanical mechanism of knee joint structural response under axial dynamic load.
Animals
;
Cattle
;
Biomechanical Phenomena
;
Knee Joint/physiology*
;
Meniscus
;
Mechanical Phenomena
;
Weight-Bearing
2.Research progress of lower limb muscle strength training in the treatment of lliotibial band syndrome.
China Journal of Orthopaedics and Traumatology 2023;36(2):189-193
Iliotibial band syndrome (ITBS), as an overused injury of the lower extremities, has developed into a common cause of lateral knee pain. At present, the treatment of ITBS includes drug therapy, muscle strength training, physical therapy, and surgical treatment. Among these methods, physical therapy, drug therapy, and surgical treatment can only alleviate the symptoms of patients. As a safe and effective treatment, lower limb muscle strength training can improve patients' muscle strength, correct abnormal gait, and reduce the recurrence rate of the disease by paying attention to the dynamic changes of patients' recovery process. At present, the pathogenesis of ITBS remains unclear, and the treatment methods are not unified. It is necessary to further study the biomechanical factors related to the lower extremities and develop more scientific and comprehensive muscle strength training methods.
Humans
;
Resistance Training
;
Running/physiology*
;
Iliotibial Band Syndrome/diagnosis*
;
Lower Extremity
;
Physical Therapy Modalities/adverse effects*
;
Knee Joint
;
Muscle Strength/physiology*
;
Muscles/injuries*
;
Biomechanical Phenomena
3.Macroscopic and mesoscopic biomechanical analysis of the bone unit in idiopathic scoliosis.
Zhaoyao WANG ; Rongchang FU ; Yuan MA ; Peng YE
Journal of Biomedical Engineering 2023;40(2):303-312
To investigate the effects of postoperative fusion implantation on the mesoscopic biomechanical properties of vertebrae and bone tissue osteogenesis in idiopathic scoliosis, a macroscopic finite element model of the postoperative fusion device was developed, and a mesoscopic model of the bone unit was developed using the Saint Venant sub-model approach. To simulate human physiological conditions, the differences in biomechanical properties between macroscopic cortical bone and mesoscopic bone units under the same boundary conditions were studied, and the effects of fusion implantation on bone tissue growth at the mesoscopic scale were analyzed. The results showed that the stresses in the mesoscopic structure of the lumbar spine increased compared to the macroscopic structure, and the mesoscopic stress in this case is 2.606 to 5.958 times of the macroscopic stress; the stresses in the upper bone unit of the fusion device were greater than those in the lower part; the average stresses in the upper vertebral body end surfaces were ranked in the order of right, left, posterior and anterior; the stresses in the lower vertebral body were ranked in the order of left, posterior, right and anterior; and rotation was the condition with the greatest stress value in the bone unit. It is hypothesized that bone tissue osteogenesis is better on the upper face of the fusion than on the lower face, and that bone tissue growth rate on the upper face is in the order of right, left, posterior, and anterior; while on the lower face, it is in the order of left, posterior, right, and anterior; and that patients' constant rotational movements after surgery is conducive to bone growth. The results of the study may provide a theoretical basis for the design of surgical protocols and optimization of fusion devices for idiopathic scoliosis.
Humans
;
Scoliosis/surgery*
;
Spinal Fusion/methods*
;
Lumbar Vertebrae/surgery*
;
Osteogenesis
;
Biomechanical Phenomena/physiology*
;
Finite Element Analysis
4.Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns.
Wei WANG ; Jianquan DING ; Yi WANG ; Yicheng LIU ; Juanjuan ZHANG ; Jingtai LIU
Journal of Biomedical Engineering 2022;39(1):75-83
Lower limb ankle exoskeletons have been used to improve walking efficiency and assist the elderly and patients with motor dysfunction in daily activities or rehabilitation training, while the assistance patterns may influence the wearer's lower limb muscle activities and coordination patterns. In this paper, we aim to evaluate the effects of different ankle exoskeleton assistance patterns on wearer's lower limb muscle activities and coordination patterns. A tethered ankle exoskeleton with nine assistance patterns that combined with differenet actuation timing values and torque magnitude levels was used to assist human walking. Lower limb muscle surface electromyography signals were collected from 7 participants walking on a treadmill at a speed of 1.25 m/s. Results showed that the soleus muscle activities were significantly reduced during assisted walking. In one assistance pattern with peak time in 49% of stride and peak torque at 0.7 N·m/kg, the soleus muscle activity was decreased by (38.5 ± 10.8)%. Compared with actuation timing, the assistance torque magnitude had a more significant influence on soleus muscle activity. In all assistance patterns, the eight lower limb muscle activities could be decomposed to five basic muscle synergies. The muscle synergies changed little under assistance with appropriate actuation timing and torque magnitude. Besides, co-contraction indexs of soleus and tibialis anterior, rectus femoris and semitendinosus under exoskeleton assistance were higher than normal walking. Our results are expected to help to understand how healthy wearers adjust their neuromuscular control mechanisms to adapt to different exoskeleton assistance patterns, and provide reference to select appropriate assistance to improve walking efficiency.
Aged
;
Ankle/physiology*
;
Ankle Joint/physiology*
;
Biomechanical Phenomena/physiology*
;
Electromyography
;
Exoskeleton Device
;
Gait/physiology*
;
Humans
;
Muscle Contraction
;
Muscle, Skeletal/physiology*
;
Walking/physiology*
5.From Parametric Representation to Dynamical System: Shifting Views of the Motor Cortex in Motor Control.
Tianwei WANG ; Yun CHEN ; He CUI
Neuroscience Bulletin 2022;38(7):796-808
In contrast to traditional representational perspectives in which the motor cortex is involved in motor control via neuronal preference for kinetics and kinematics, a dynamical system perspective emerging in the last decade views the motor cortex as a dynamical machine that generates motor commands by autonomous temporal evolution. In this review, we first look back at the history of the representational and dynamical perspectives and discuss their explanatory power and controversy from both empirical and computational points of view. Here, we aim to reconcile the above perspectives, and evaluate their theoretical impact, future direction, and potential applications in brain-machine interfaces.
Biomechanical Phenomena
;
Brain-Computer Interfaces
;
Motor Cortex/physiology*
;
Neurons/physiology*
6.Musculoskeletal multibody dynamics investigation of posterior-stabilized total knee prosthesis.
Zhenxian CHEN ; Zhifeng ZHANG ; Yongchang GAO ; Jing ZHANG ; Lei GUO ; Zhongmin JIN
Journal of Biomedical Engineering 2022;39(4):651-659
Posterior-stabilized total knee prostheses have been widely used in orthopedic clinical treatment of knee osteoarthritis, but the patients and surgeons are still troubled by the complications, for example severe wear and fracture of the post, as well as prosthetic loosening. Understanding the in vivo biomechanics of knee prostheses will aid in the decrease of postoperative prosthetic revision and patient dissatisfaction. Therefore, six different designs of posterior-stabilized total knee prostheses were used to establish the musculoskeletal multibody dynamics models of total knee arthroplasty respectively, and the biomechanical differences of six posterior-stabilized total knee prostheses were investigated under three simulated physiological activities: walking, right turn and squatting. The results showed that the post contact forces of PFC Sigma and Scorpio NGR prostheses were larger during walking, turning right, and squatting, which may increase the risk of the fracture and wear as well as the early loosening. The post design of Gemini SL prosthesis was more conductive to the knee internal-external rotation and avoided the edge contact and wear. The lower conformity design in sagittal plane and the later post-cam engagement resulted in the larger anterior-posterior translation. This study provides a theoretical support for guiding surgeon selection, improving posterior-stabilized prosthetic design and reducing the prosthetic failure.
Arthroplasty, Replacement, Knee/methods*
;
Biomechanical Phenomena
;
Humans
;
Knee Joint/surgery*
;
Knee Prosthesis
;
Prosthesis Design
;
Range of Motion, Articular/physiology*
;
Tibia/surgery*
8.Treatment of mandibular angle fracture: Revision of the basic principles.
Behnam BOHLULI ; Ebrahim MOHAMMADI ; Iman Zoljanah OSKUI ; Nima MOARAMNEJAD
Chinese Journal of Traumatology 2019;22(2):117-119
Biodynamics of mandibular angle fractures has been extensively discussed in the literature in search for the best way to fixate and expedite recovery of trauma patients. Pioneers like Michelet and Champy had the greatest impact on evolving of osteosynthesis in maxillofacial traumatology; they introduced their basic principles frequently used to describe the biomechanics of mandibular fixation. Their concept states when a physiologic load is applied on mandibular teeth a negative tension will be created at superior border and a positive pressure will appear at inferior border. These simple definitions are the basis for the advent of fixation modalities in mandibular angle fracture. This article sought to reassess these principals based on load location via finite elements method.
Biomechanical Phenomena
;
Dental Stress Analysis
;
Finite Element Analysis
;
Fracture Fixation, Internal
;
methods
;
Humans
;
Mandible
;
physiopathology
;
Mandibular Fractures
;
physiopathology
;
surgery
;
Tooth
;
physiology
9.Study on the influence of wearable lower limb exoskeleton on gait characteristics.
Junxia ZHANG ; Yunhong CAI ; Qi LIU
Journal of Biomedical Engineering 2019;36(5):785-794
The purpose of this paper was to investigate the effects of wearable lower limb exoskeletons on the kinematics and kinetic parameters of the lower extremity joints and muscles during normal walking, aiming to provide scientific basis for optimizing its structural design and improving its system performance. We collected the walking data of subjects without lower limb exoskeleton and selected the joint angles in sagittal plane of human lower limbs as driving data for lower limb exoskeleton simulation analysis. Anybody (the human biomechanical analysis software) was used to establish the human body model (the human body model without lower limb exoskeleton) and the man-machine system model (the lower limb exoskeleton model). The kinematics parameters (joint force and joint moment) and muscle parameters (muscle strength, muscle activation, muscle contraction velocity and muscle length) under two situations were compared. The experimental result shows that walking gait after wearing the lower limb exoskeleton meets the normal gait, but there would be an occasional and sudden increase in muscle strength. The max activation level of main lower limb muscles were all not exceeding 1, in another word the muscles did not appear fatigue and injury. The highest increase activation level occurred in rectus femoris (0.456), and the lowest increase activation level occurred in semitendinosus (0.013), which means the lower limb exoskeletons could lead to the fatigue and injury of semitendinosus. The results of this study illustrate that to avoid the phenomenon of sudden increase of individual muscle force, the consistency between the length of body segment and the length of exoskeleton rod should be considered in the design of lower limb exoskeleton extremity.
Biomechanical Phenomena
;
Exoskeleton Device
;
Gait
;
Humans
;
Lower Extremity
;
physiology
10.Dynamic simulation and experimental verification of human body turning over in supine position.
Da LU ; Peng SU ; Run JI ; Hongliang LI ; Yuxin HAO ; Yubo FAN
Journal of Biomedical Engineering 2019;36(5):777-784
The tilted supine position has been evaluated to be one of the significantly effective approaches to prevent bedsore of the patients in the bedridden state. Thus, it has deeply positive influences that in view of dynamics this study explores how the position works. Based on the anatomical theories, this study formulates the human dynamic model. Furthermore, the dynamic simulation of three usual postures in tilted supine position including lying on back, lying with one knee bent and lying with the upper and lower limb on one side lifted is carried out. Therefore, the changes of the three driving forces named as chest force, waist force and thigh force in the tilted supine position can be observed. In order to verify the validity of this simulation, this study obtains the electromyogram measurements of ectopectoralis, external obliques and thigh muscles which are respectively close to the chest, waist and thigh by conducting the human force measurements experiment. The result revealed that in terms of range and trend, the experimental data and simulation's data were consistent. In conclusion, the changes of these muscles in the supine position movements are researched efficiently by both this experiment and the dynamic simulation. Besides, the result is crucially key to find the mechanism of human's tilted supine position movements.
Biomechanical Phenomena
;
Electromyography
;
Humans
;
Models, Anatomic
;
Movement
;
Muscle, Skeletal
;
physiology
;
Posture
;
Supine Position

Result Analysis
Print
Save
E-mail