1.Schistosoma infection, KRAS mutation status, and prognosis of colorectal cancer.
Xinyi LI ; Hongli LIU ; Bo HUANG ; Ming YANG ; Jun FAN ; Jiwei ZHANG ; Mixia WENG ; Zhecheng YAN ; Li LIU ; Kailin CAI ; Xiu NIE ; Xiaona CHANG
Chinese Medical Journal 2024;137(2):235-237
2.Predictive Value of Peripheral Blood Biomarkers in the Treatment of Lung Cancer Patients with Anti PD-1 Immunotherapy.
Shu SU ; Xin LV ; Liang QI ; Min WEI ; Baorui LIU ; Lifeng WANG
Chinese Journal of Lung Cancer 2024;26(12):901-909
BACKGROUND:
The application of programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) antibodies has greatly improved the clinical outcomes of lung cancer patients. Here, we retrospectively analyzed the efficacy of PD-1 antibody therapy in locally advanced non-surgical or metastatic lung cancer patients, and preliminarily explored the correlation between peripheral blood biomarkers and clinical responses.
METHODS:
We conducted a single center study that included 61 IIIA-IV lung cancer patients who received PD-1 antibody treatment from March 2020 to December 2021, and collected the medical record data on PD-1 antibody first-line or second-line treatment. The levels of multiple Th1 and Th2 cytokines in the patient's peripheral blood serum, as well as the phenotype of peripheral blood T cells, were detected and analyzed.
RESULTS:
All the patients completed at least 2 cycles of PD-1 monoclonal antibody treatment. Among them, 42 patients (68.9%) achieved partial response (PR); 7 patients (11.5%) had stable disease (SD); and 12 patients (19.7%) had progressive disease (PD). The levels of peripheral blood interferon gamma (IFN-γ) (P=0.023), tumor necrosis factor α (TNF-α) (P=0.007) and interleukin 5 (IL-5) (P=0.002) before treatment were higher in patients of the disease control rate (DCR) (PR+SD) group than in the PD group. In addition, the decrease in absolute peripheral blood lymphocyte count after PD-1 antibody treatment was associated with disease progression (P=0.023). Moreover, the levels of IL-5 (P=0.0027) and IL-10 (P=0.0208) in the blood serum after immunotherapy were significantly increased compared to baseline.
CONCLUSIONS
Peripheral blood serum IFN-γ, TNF-α and IL-5 in lung cancer patients have certain roles in predicting the clinical efficacy of anti-PD-1 therapy. The decrease in absolute peripheral blood lymphocyte count in lung cancer patients is related to disease progression, but large-scale prospective studies are needed to further elucidate the value of these biomarkers.
Humans
;
Lung Neoplasms/metabolism*
;
Interleukin-5/therapeutic use*
;
Tumor Necrosis Factor-alpha/therapeutic use*
;
Retrospective Studies
;
Programmed Cell Death 1 Receptor
;
Biomarkers
;
Immunotherapy
;
Disease Progression
;
B7-H1 Antigen
3.Increased human neutrophil lipocalin and its clinical relevance in adult-onset Still's disease.
Ji LI ; Yingni LI ; Ru LI ; Xiangbo MA ; Lianjie SHI ; Shengguang LI ; Qian GUO ; Yuan JIA ; Zhanguo LI
Chinese Medical Journal 2023;136(23):2867-2873
BACKGROUND:
Human neutrophil lipocalin (HNL) has been used extensively to differentiate acute bacterial infection from febrile diseases as a biomarker to reflect the activation of the neutrophil. The serum HNL levels in the adult-onset Still's disease (AOSD) patients with and without infection, as well as the healthy controls (HCs), were analyzed statistically in this study to evaluate the value of HNL for the diagnosis of AOSD.
METHODS:
A total of 129 AOSD patients were enrolled, from whom blood samples were drawn and the AOSD diagnosis was confirmed through the review of the medical records, where the systemic score, demographic characteristics, clinical manifestations, and laboratory parameters were also collected for the patients; in addition, a total of 40 HCs were recruited among the blood donors from the healthcare center with the relevant information collected. The HNL test was done for the blood samples with the enzyme-linked immunosorbent assay and the analyses were done for the correlations of HNL with clinical manifestations and diagnostic effectiveness.
RESULTS:
The serum HNL increased significantly in the patients with only AOSD as compared with that in the HCs (139.76 ± 8.99 ng/mL vs . 55.92 ± 6.12 ng/mL; P < 0.001). The serum HNL level was correlated with the white blood cell (WBC) count ( r = 0.335, P < 0.001), neutrophil count ( r = 0.334, P < 0.001), erythrocyte sedimentation rate ( r = 0.241, P = 0.022), C-reactive protein ( r = 0.442, P < 0.0001), and systemic score ( r = 0.343, P < 0.0001) in the AOSD patients significantly. Patients with fever, leukocytosis ≥15,000/mm 3 , and myalgia in the HNL-positive group were observed relatively more than those in the HNL-negative group ( P = 0.009, P = 0.023, and P = 0.007, respectively). HNL was a more sensitive indicator than ferritin and C-reactive protein (CRP) to differentiate the AOSD patients with bacterial infection from AOSD-only patients, and the Youden index was 0.6 for HNL and 0.29 for CRP.
CONCLUSION
Serum HNL can be used as a biomarker for the diagnosis of the AOSD, and HNL is also observed to be associated with the disease activity.
Adult
;
Humans
;
Still's Disease, Adult-Onset/diagnosis*
;
C-Reactive Protein/metabolism*
;
Neutrophils/metabolism*
;
Clinical Relevance
;
Biomarkers
;
Bacterial Infections
4.Research progress of metabolomics in psoriasis.
Chinese Medical Journal 2023;136(15):1805-1816
Psoriasis is a chronic inflammatory skin disease with significant physical and psychological burdens. The interplay between the innate and adaptive immune systems is thought to contribute to the pathogenesis; however, the details of the pathogenesis remain unclear. In addition, reliable biomarkers for diagnosis, assessment of disease activity, and monitoring of therapeutic response are limited. Metabolomics is an emerging science that can be used to identify and analyze low molecular weight molecules in biological systems. During the past decade, metabolomics has been widely used in psoriasis research, and substantial progress has been made. This review summarizes and discusses studies that applied metabolomics to psoriatic disease. These studies have identified dysregulation of amino acids, carnitines, fatty acids, lipids, and carbohydrates in psoriasis. The results from these studies have advanced our understanding of: (1) the molecular mechanisms of psoriasis pathogenesis; (2) diagnosis of psoriasis and assessment of disease activity; (3) the mechanism of treatment and how to monitor treatment response; and (4) the link between psoriasis and comorbid diseases. We discuss common research strategies and progress in the application of metabolomics to psoriasis, as well as emerging trends and future directions.
Humans
;
Psoriasis/drug therapy*
;
Skin/metabolism*
;
Biomarkers/metabolism*
;
Metabolomics/methods*
5.Advances in live-imaging aging reporter mice.
Jie SUN ; Yu-Ning WANG ; Shan-Shan LUO ; Bao-Hua LIU
Acta Physiologica Sinica 2023;75(6):836-846
Aging is an independent risk factor for chronic diseases in the elderly, and understanding aging mechanisms is one of the keys to achieve early prevention and effective intervention for the diseases. Aging process is dynamic and systemic, making it difficult for mechanistic study. With recent advances in aging biomarkers and development of live-imaging technologies, more and more reporter mouse models have been generated, which can live monitor the aging process, and help investigate aging mechanisms at systemic level and develop intervention strategies. This review summarizes recent advances in live-imaging aging reporter mouse models based on widely used aging biomarkers (p16Ink4a, p21Waf1/Cip1, p53 and Glb1), and discusses their applications in aging research.
Humans
;
Animals
;
Mice
;
Aged
;
Aging
;
Cyclin-Dependent Kinase Inhibitor p16/metabolism*
;
Cyclin-Dependent Kinase Inhibitor p21/metabolism*
;
Biomarkers
;
Tumor Suppressor Protein p53
6.Mechanism of Jiming Powder in ameliorating heart failure with preserved ejection fraction based on metabolomics.
Xiao-Qi WEI ; Xin-Yi FAN ; Hai-Yin PU ; Shuai LI ; Jia-Yang TANG ; Kuo GAO ; Fang-He LI ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2023;48(17):4747-4760
In this study, untargeted metabolomics was conducted using the liquid chromatography-tandem mass spectrometry(LC-MS/MS) technique to analyze the potential biomarkers in the plasma of mice with heart failure with preserved ejection fraction(HFpEF) induced by a high-fat diet(HFD) and nitric oxide synthase inhibitor(Nω-nitro-L-arginine methyl ester hydrochloride, L-NAME) and explore the pharmacological effects and mechanism of Jiming Powder in improving HFpEF. Male C57BL/6N mice aged eight weeks were randomly assigned to a control group, a model group, an empagliflozin(10 mg·kg~(-1)·d~(-1)) group, and high-and low-dose Jiming Powder(14.3 and 7.15 g·kg~(-1)·d~(-1)) groups. Mice in the control group were fed on a low-fat diet, and mice in the model group and groups with drug intervention were fed on a high-fat diet. All mice had free access to water, with water in the model group and Jiming Powder groups being supplemented with L-NAME(0.5 g·L~(-1)). Drugs were administered on the first day of modeling, and 15 weeks later, blood pressure and cardiac function of the mice in each group were measured. Heart tissues were collected for hematoxylin-eosin(HE) staining to observe pathological changes and Masson's staining to observe myocardial collagen deposition. Untargeted metabolomics analysis was performed on the plasma collected from mice in each group, and metabolic pathway analysis was conducted using MetaboAnalyst 5.0. The results showed that the blood pressure was significantly lower and the myocardial concentric hypertrophy and left ventricular diastolic dysfunction were significantly improved in both the high-dose and low-dose Jiming Powder groups as compared with those in the model group. HE and Masson staining showed that both high-dose and low-dose Jiming Powder significantly alleviated myocardial fibrosis. In the metabolomics experiment, 23 potential biomarkers were identified and eight strongly correlated metabolic pathways were enriched, including linoleic acid metabolism, histidine metabolism, alpha-linolenic acid metabolism, glycerophospholipid metabolism, purine metabolism, porphyrin and chlorophyll metabolism, arachidonic acid metabolism, and pyrimidine metabolism. The study confirmed the pharmacological effects of Jiming Powder in lowering blood pressure and ameliorating HFpEF and revealed the mechanism of Jiming Powder using the metabolomics technique, providing experimental evidence for the clinical application of Jiming Powder in treating HFpEF and a new perspective for advancing and developing TCM therapy for HFpEF.
Male
;
Mice
;
Animals
;
Heart Failure/metabolism*
;
Powders
;
Stroke Volume/physiology*
;
Chromatography, Liquid
;
NG-Nitroarginine Methyl Ester/therapeutic use*
;
Mice, Inbred C57BL
;
Tandem Mass Spectrometry
;
Metabolomics
;
Biomarkers
;
Water
7.Linderae Radix water extract treats diarrhea-predominant irritable bowel syndrome in rats: a serum metabolomics study.
Tao LIU ; Meng-Ling WU ; Guo-Yan DENG ; Yang HE ; Yi-Ran HE ; Gui-Ming DENG ; Lin-Qi OUYANG
China Journal of Chinese Materia Medica 2023;48(19):5356-5364
This study aims to investigate the mechanism of Linderae Radix water extract(LRWE) in the prevention and treatment of diarrhea-predominant irritable bowel syndrome(IBS-D) based on serum metabolomics. Eighteen 2-week-old male SD rats were randomized into control, IBS-D model, and LRWE groups. The rats in other groups except the control group received gavage of senna concentrate combined with restraint stress for the modeling of IBS-D. The rats in the LRWE group were administrated with LRWE(5.4 g·kg~(-1)) by gavage, and those in the control and IBS-D model groups with an equal volume of distilled water for a total of 14 days. The visceral sensitivity was evaluated by the abdominal withdrawal reflex(AWR) score, and the degree of diarrhea was assessed by the fecal water content(FWC). The morphological changes of the colon and the morphology and number of goblet cells were observed by hematoxylin-eosin(HE) and periodic acid-schiff(PAS) staining, respectively. Ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) was used for the screening of the potential biomarkers in the rat serum and their related metabolic pathways. The results showed that LRWE reduced the AWR score, decreased FWC, and alleviated visceral sensitivity and diarrhea symptoms in IBS-D rats. HE and PAS staining showed that LRWE mitigated low-grade intestinal inflammation and increased the number of mature secretory goblet cells in the colonic epithelium of IBS-D rats. A total of 25 potential biomarkers of LRWE in treating IBS-D were screened out in this study, which were mainly involved in riboflavin, tryptophan, glycine, serine and threonine metabolism, glyoxylate and dicarboxylate metabolism, and cysteine and methionine metabolism. The regulatory effects were the most significant on the riboflavin and tryptophan metabolism pathways. LRWE may alleviate the visceral hypersensitivity by promoting energy metabolism and amino acid metabolism, enhancing intestinal barrier function, and improving intestinal immune function in IBS-D rats.
Rats
;
Male
;
Animals
;
Irritable Bowel Syndrome/metabolism*
;
Water
;
Chromatography, Liquid
;
Tryptophan
;
Rats, Sprague-Dawley
;
Tandem Mass Spectrometry
;
Diarrhea/drug therapy*
;
Biomarkers
;
Riboflavin
8.Identification and validation of novel biomarkers for cold-dampness syndrome of rheumatoid arthritis based on integration of multiple bioinformatics methods.
Tao LI ; Wen-Jia CHEN ; Yan-Qiong ZHANG ; Wei LIU ; Na LIN ; Xue-Ting LIU
China Journal of Chinese Materia Medica 2023;48(24):6721-6729
This study aims to identify the novel biomarkers of cold-dampness syndrome(RA-Cold) of rheumatoid arthritis(RA) by gene set enrichment analysis(GSEA), weighted gene correlation network analysis(WGCNA), and clinical validation. Firstly, transcriptome sequencing was carried out for the whole blood samples from RA-Cold patients, RA patients with other traditional Chinese medicine(TCM) syndromes, and healthy volunteers. The differentially expressed gene(DEG) sets of RA-Cold were screened by comparison with the RA patients with other TCM syndromes and healthy volunteers. Then, GSEA and WGCNA were carried out to screen the key DEGs as candidate biomarkers for RA-Cold. Experimentally, the expression levels of the candidate biomarkers were determined by RT-qPCR for an independent clinical cohort(not less than 10 cases/group), and the clinical efficacy of the candidates was assessed using the receiver operating characteristic(ROC) curve. The results showed that 3 601 DEGs associated with RA-Cold were obtained, including 106 up-regulated genes and 3 495 down-regulated genes. The DEGs of RA-Cold were mainly enriched in the pathways associated with inflammation-immunity regulation, hormone regulation, substance and energy metabolism, cell function regulation, and synovial pannus formation. GSEA and WGCNA showed that recombinant proteasome 26S subunit, ATPase 2(PSMC2), which ranked in the top 50% in terms of coefficient of variation, representativeness of pathway, and biological modules, was a candidate biomarker of RA-Cold. Furthermore, the validation results based on the clinical independent sample set showed that the F1 value, specificity, accuracy, and precision of PSMC2 for RA-Cold were 70.3%, 61.9%, 64.5%, and 81.3%, respectively, and the area under the curve(AUC) value was 0.96. In summary, this study employed the "GSEA-WGCNA-validation" integrated strategy to identify novel biomarkers of RA-Cold, which helped to improve the TCM clinical diagnosis and treatment of core syndromes in RA and provided an experimental basis for TCM syndrome differentiation.
Humans
;
Arthritis, Rheumatoid/drug therapy*
;
Biomarkers/metabolism*
;
Medicine, Chinese Traditional
;
Gene Expression Profiling/methods*
;
Computational Biology
;
Gene Regulatory Networks
;
ATPases Associated with Diverse Cellular Activities/therapeutic use*
;
Proteasome Endopeptidase Complex/therapeutic use*
9.ACSL5, a prognostic factor in acute myeloid leukemia, modulates the activity of Wnt/β-catenin signaling by palmitoylation modification.
Wenle YE ; Jinghan WANG ; Jiansong HUANG ; Xiao HE ; Zhixin MA ; Xia LI ; Xin HUANG ; Fenglin LI ; Shujuan HUANG ; Jiajia PAN ; Jingrui JIN ; Qing LING ; Yungui WANG ; Yongping YU ; Jie SUN ; Jie JIN
Frontiers of Medicine 2023;17(4):685-698
Acyl-CoA synthetase long chain family member 5 (ACSL5), is a member of the acyl-CoA synthetases (ACSs) family that activates long chain fatty acids by catalyzing the synthesis of fatty acyl-CoAs. The dysregulation of ACSL5 has been reported in some cancers, such as glioma and colon cancers. However, little is known about the role of ACSL5 in acute myeloid leukemia (AML). We found that the expression of ACSL5 was higher in bone marrow cells from AML patients compared with that from healthy donors. ACSL5 level could serve as an independent prognostic predictor of the overall survival of AML patients. In AML cells, the ACSL5 knockdown inhibited cell growth both in vitro and in vivo. Mechanistically, the knockdown of ACSL5 suppressed the activation of the Wnt/β-catenin pathway by suppressing the palmitoylation modification of Wnt3a. Additionally, triacsin c, a pan-ACS family inhibitor, inhibited cell growth and robustly induced cell apoptosis when combined with ABT-199, the FDA approved BCL-2 inhibitor for AML therapy. Our results indicate that ACSL5 is a potential prognosis marker for AML and a promising pharmacological target for the treatment of molecularly stratified AML.
Humans
;
Antineoplastic Agents/therapeutic use*
;
Apoptosis
;
beta Catenin/metabolism*
;
Biomarkers, Tumor/metabolism*
;
Cell Line, Tumor
;
Coenzyme A Ligases/metabolism*
;
Leukemia, Myeloid, Acute/metabolism*
;
Lipoylation
;
Prognosis
;
Wnt Signaling Pathway
10.Hyperoxia caused intestinal metabolism disorder in mice.
Wen ZHANG ; Tao CHEN ; Bao FU ; Huajun CHEN ; Xiaoyun FU ; Zhouxiong XING
Chinese Critical Care Medicine 2023;35(9):980-983
OBJECTIVE:
To investigate the effect of hyperoxia on intestinal metabolomics in mice.
METHODS:
Sixteen 8-week-old male C57BL/6 mice were randomly divided into hyperoxia group and control group, with 8 mice in each group. The hyperoxia group was exposed to 80% oxygen for 14 days. Mice were anesthetized and euthanized, and cecal contents were collected for untargeted metabolomics analysis by liquid chromatography-mass spectrometry (LC-MS) combined detection. Orthogonal partial least square discriminant analysis (OPLS-DA), volcano plot analysis, heat map analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the effects of hyperoxia on metabolism.
RESULTS:
(1) OPLS-DA analysis showed that R2Y was 0.967 and Q2 was 0.796, indicating that the model was reliable. (2) Volcano plot and heat map analysis showed significant statistical differences in the expression levels of metabolites between the two groups, with 541 up-regulated metabolites, 64 down-regulated metabolites, and 907 no differences, while the elevated 5-hydroxy-L-lysine was the most significant differential metabolite induced by high oxygen. (3) KEGG pathway enrichment analysis showed that porphyrin and chlorophyll metabolism (P = 0.005), lysine degradation (P = 0.047), and aromatic compound degradation (P = 0.024) were the targets affected by hyperoxia. (4) Differential analysis of metabolic products through KEGG enrichment pathway showed that hyperoxia had a significant impact on the metabolism of porphyrin and chlorophyll, lysine, and aromatic compounds such as benzene and o-cresol.
CONCLUSIONS
Hyperoxia significantly induces intestinal metabolic disorders. Hyperoxia enhances the metabolism of porphyrins and chlorophyll, inhibits the degradation of lysine, and delays the degradation of aromatic compounds such as benzene and o-cresol.
Mice
;
Male
;
Animals
;
Lysine
;
Hyperoxia
;
Benzene
;
Mice, Inbred C57BL
;
Metabolic Diseases
;
Oxygen
;
Chlorophyll
;
Porphyrins
;
Biomarkers/metabolism*

Result Analysis
Print
Save
E-mail