2.The regulatory role of the RUS family in plant growth and development.
Yao HU ; Sirui LI ; Xinxin ZHANG ; Qinglin TANG ; Dayong WEI ; Shibing TIAN ; Yang YANG ; Zhimin WANG
Chinese Journal of Biotechnology 2024;40(1):81-93
The chloroplast genome encodes many key proteins involved in photosynthesis and other metabolic processes, and metabolites synthesized in chloroplasts are essential for normal plant growth and development. Root-UVB (ultraviolet radiation B)-sensitive (RUS) family proteins composed of highly conserved DUF647 domain belong to chloroplast proteins. They play an important role in the regulation of various life activities such as plant morphogenesis, material transport and energy metabolism. This article summarizes the recent advances of the RUS family proteins in the growth and development of plants such as embryonic development, photomorphological construction, VB6 homeostasis, auxin transport and anther development, with the aim to facilitate further study of its molecular regulation mechanism in plant growth and development.
Female
;
Pregnancy
;
Humans
;
Ultraviolet Rays
;
Biological Transport
;
Chloroplasts/genetics*
;
Embryonic Development
;
Plant Development/genetics*
3.Identification and expression analysis of the YABBY gene family in strawberry.
Tingting YU ; Shurong SHEN ; Yiling XU ; Xinyu WANG ; Yao YU ; Bojun MA ; Xifeng CHEN
Chinese Journal of Biotechnology 2024;40(1):104-121
YABBY proteins are important transcription factors that regulate morphogenesis and organ development in plants. In order to study the YABBY of strawberry, bioinformatic technique were used to identify the YABBY gene families in Fragaria vesca (diploid) and Fragaria×ananassa (octoploid), and then analyze the sequence characters, phylogeny and collinearity of the family members. The RNA-seq data and the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) technique were used to assay the expression patterns of the family members. A green fluorescent protein (GFP) was fused with FvYABBYs and transiently expressed in tobacco leaf cells for the subcellular localization. As the results, six FvYABBY genes and 26 FxaYABBY genes were identified from F. vesca and F.×ananassa, respectively. The FvYABBY genes were grouped into five clades, and five family members were orthologous with AtYABBY genes of Arabidopsis. In F. vesca, all of the FvYABBYs were basically not expressed not expressed in root and receptacle, while FvYABBY1, FvYABBY2, FvYABBY5 and FvYABBY6 were highly expressed in leaf, shoot, flower and achene. In F.×ananassa, FxaYABBY1, FxaYABBY2, FxaYABBY5 and FxaYABBY6 were expressed in achene, and all FxaYABBY were poorly or not expressed in receptacle. Additionally, under the abiotic stresses of low temperature, high salt and drought, the expression of FvYABBY1, FvYABBY3, FvYABBY4 and FvYABBY6 were down-regulated, FvYABBY5 was up-regulated, and FvYABBY2 was up-regulated and then down-regulated. In tobacco leaf cells, the subcellular localization of FvYABBY proteins were in the nucleus. These results provides a foundation for the functional researches of YABBY gene in strawberry.
Fragaria/genetics*
;
Arabidopsis
;
Biological Assay
;
Cold Temperature
;
Computational Biology
4.Silencing GmWRKY33B genes leads to reduced disease resistance in soybean.
Chenli ZHONG ; Wenxu WANG ; Lina LIAO ; Jianzhong LIU
Chinese Journal of Biotechnology 2024;40(1):163-176
The WRKYs are a group of plant-specific transcription factors that play important roles in defense responses. In this study, we silenced 2 GmWRKY33B homologous genes using a bean pod mosaic virus (BPMV) vector carrying a single fragment from the conserved region of the GmWRKY33B genes. Silencing GmWRKY33B did not result in morphological changes. However, significantly reduced resistances to Pseudomonas syringae pv. glycinea (Psg) and soybean mosaic virus (SMV) were observed in the GmWRKY33B-silenced plants, indicating a positive role of the GmWRKY33B genes in disease resistance. Kinase assay showed that silencing the GmWRKY33B genes significantly reduced the activation of GmMPK6, but not GmMPK3, in response to flg22 treatment. Reverse transcriptase PCR (RT-PCR) analysis of the genes encoding prenyltransferases (PTs), which are the key enzymes in the biosynthesis of glyceollin, showed that the Psg-induced expression of these genes was significantly reduced in the GmWRKY33B-silenced plants compared with the BPMV-0 empty vector plants, which correlated with the presence of the W-boxes in the promoter regions of these genes. Taken together, our results suggest that GmWRKY33Bs are involved in soybean immunity through regulating the activation of the kinase activity of GmMPK6 as well as through regulating the expression of the key genes encoding the biosynthesis of glyceollins.
Glycine max/genetics*
;
Disease Resistance/genetics*
;
Biological Assay
;
Dimethylallyltranstransferase
;
Gene Silencing
5.Exploring the innovative talents training mode in new era.
Li MA ; Siyi SHEN ; Yuchun RAO
Chinese Journal of Biotechnology 2024;40(1):292-303
Innovation is an important way to promote economic development and social progress. Recent years have seen rapid development of biological sciences. In response to social demands and the needs for developing an innovative country, fostering innovative talents in the field of biosciences has become a significant initiative supported by national policies and the needs from talent market. Taking the innovative talent training mode implemented by Zhejiang Normal University in the field of biological sciences as an example, this paper comprehensively introduces several key aspects of the mode. This includes establishing a mentorship system as the foundation, carrying out curriculum reform through project competitions and practical platforms, and promoting synergy among industry, academia, and research in talent training. This training mode has achieved positive results in practice, promoting the training of outstanding innovative talents in biological science majors, and may facilitate the reform of talent training in similar majors.
Humans
;
Biological Science Disciplines
;
Industry
;
Policy
;
Universities
6.Systemic treatment of pityriasis rubra pilaris with an IL-17 inhibitor
Klara Cvenkel ; Mateja Dolenc Voljc
Journal of the Philippine Dermatological Society 2024;33(Suppl 1):17-17
Pityriasis rubra pilaris (PRP) is a rare and challenging dermatological condition that often mimics other skin disorders, complicating diagnosis and management. This case is unique due to the patient’s comorbidities, which restricted treatment options and required a shift from conventional therapy to biologic treatment.
A 57-year-old male presented with a three-week history of an itchy rash on the face, neck, and upper extremities after sun exposure. Initial treatment with topical corticosteroids was ineffective, and the condition progressed to involve the trunk and lower extremities with erythroderma. Additional findings included hyperkeratosis of the palms and soles, psoriatic plaques on the elbows, and thickened toenails with onychomycosis. Histopathology revealed superficial psoriasiform dermatitis, consistent with PRP. Methotrexate (12.5 mg/week) was initiated, leading to initial improvement. However, a relapse occurred after five months, and due to elevated liver enzymes, a dose increase was not feasible. Secukinumab, an IL-17A inhibitor, was subsequently recommended by the clinic consilium. Already after one month, significant improvement was observed, and near-complete remission was achieved by four months. The patient continues treatment with secukinumab with a satisfactory clinical response and minimal residual symptoms.
This case underscores the complexities of diagnosing and managing PRP, particularly when comorbidities limit standard treatment options. The successful use of secukinumab, despite the failure of conventional therapy, demonstrates the potential of biologics in managing PRP, especially in refractory cases. It highlights the importance of personalized treatment strategies in optimizing outcomes for patients with complex dermatological conditions.
Human ; Male ; Middle Aged: 45-64 Yrs Old ; Biological Therapy ; Pityriasis Rubra Pilaris
7.Risk ractors for suicide among adolescents in Bangka Belitung Island, Indonesia: A qualitative study approach
Suherman SKep Ners ; udi Anna Keliat ; Novy Helena Catharina Daulima
Acta Medica Philippina 2024;58(Early Access 2024):1-9
Background:
Suicide among adolescents is a critical global health problem. Identifying risk factors for suicide in adolescents is crucial because it is one of the most severe mental health issues and can result in loss of life. Risk factors serve as indicators that have the potential to bring life to an end. However, people around adolescents often display indifference and even tend to overlook the suicide risk factors experienced by them.
Objective:
This study aimed to explore the risk factors for suicide in adolescents in Indonesia.
Methods:
This study used qualitative descriptive research design conducted at State Vocational High Schools (SMKN) and Puskesmas. Data collection was done through Focus Group Discussion (FGD) of 10 students, and in-depth interviews of eight participants (two parents of adolescents who attempted suicide, two guidance counseling teachers, two adolescents who attempted suicide, and two mental nurses) The data were analyzed using thematic analysis.
Results:
The risk factors for suicide experienced by adolescents are biological, psychological, and social factors. These risk factors for suicide are stressors that contribute to adolescents engaging in suicidal behavior. Identifying the risk factors experienced by adolescents is crucial for suicide prevention.
Conclusion
The risk factors that lead to suicide in adolescents encompass biological, psychological, and social factors. A thorough understanding of suicide among parents, teachers, and peers can significantly assist in implementing suitable prevention measures and interventions for adolescent suicide.
Adolescent
;
Risk Factors
;
Biological Factors
;
Psychology
;
Social Factors
;
Suicide
8.Antimicrobial activity of Ardisia serrata (Cavs.) Pers. ethanolic and aqueous leaf extract on the growth and biofilm formation of selected bacterial isolates
Patrick Josemaria DR. Altavas ; Alfonso Rafael G. Abaya ; Remo Vittorio Thaddeus D. Abella ; Danna Lee A. Acosta ; Angelica C. Aguilar ; Camille Anne V. Aguinaldo ; Katrina Loise L. Aguirre ; Catherine Therese C. Amante ; Karen B. Amora ; Glen Aldrix R. Anarna ; Rafael T. Andrada ; Gere Ganixon T. Ang ; Jeram Caezar R. Angobung ; Angelo V. Aquino II ; Dennielle Ann P. Arabis ; Hannah Luisa G. Awitan ; Mary Faith D. Baccay ; Chryz Angelo Jonathan B. Bagsic ; Tomas V. Baldosano Jr. ; Cecilia C. Maramba-Lazarte
Acta Medica Philippina 2024;58(18):91-97
Background:
Ardisia serrata (Aunasin) is an endemic Philippine plant of the family Primulaceae, with several studiesshowing the genus Ardisia as having potential antibacterial, antiangiogenic, cytotoxic, and antipyretic properties.
Objective:
This study aims to determine the antibacterial and antibiofilm-forming activity of Ardisia serrata ethanolic and aqueous extracts on Escherichia coli, Methicillin-Sensitive Staphylococcus aureus (MSSA), and Methicillin-Resistant Staphylococcus aureus (MRSA).
Methods:
This is an experimental study testing the activity against bacterial strains of E. coli, MSSA, and MRSA using ethanolic and aqueous extracts of A. serrata leaves. Microtiter susceptibility and biofilm inhibition assays were done with two-fold dilutions of the extract against the selected strains using spectrophotometry with optical density (OD) at 600 nm and 595 nm, respectively, to quantify bacterial growth and biofilm inhibition. The bacterial susceptibility and biofilm inhibition activity was reported as percent inhibition (PI). Minimum inhibitory concentration (MIC), and minimum biofilm inhibition concentration (MBIC) values were obtained using logarithmic regression of the PI values.
Results:
A. serrata ethanolic extracts showed weak growth inhibitory activity against MSSA and MRSA with minimum inhibitory concentration (MIC) values of 2.6192 and 3.2988 mg/mL, respectively, but no biofilm inhibition activity was noted, while the aqueous extracts exhibited negligible biofilm inhibition activity against MSSA and MRSA with minimum biofilm inhibition concentration (MBIC) values of 13.5972 and 8964.82 mg/mL, respectively, and with no growth inhibition activity. Both ethanolic and aqueous extracts showed no growth inhibition and biofilm inhibition activities against E. coli.
Conclusion
Staphylococcus aureus is susceptible to the bioactivity of the leaf extracts of A. serrata and has potential to be used as an antibacterial in the treatment of infectious diseases.
Methicillin-resistant Staphylococcus aureus
;
Escherichia coli
;
natural product
;
biological products
9.Gene expression and immunolocalization of chitin deacetylase BmCDA2 in silkworm.
Yun HE ; Yifei CHEN ; Qinglang WANG ; Ziyu ZHANG ; Haonan DONG ; Taixia SHEN ; Yong HOU ; Jing GONG
Chinese Journal of Biotechnology 2023;39(4):1655-1669
Deacetylation of chitin is closely related to insect development and metamorphosis. Chitin deacetylase (CDA) is a key enzyme in the process. However, to date, the CDAs of Bombyx mori (BmCDAs), which is a model Lepidopteran insect, were not well studied. In order to better understand the role of BmCDAs in the metamorphosis and development of silkworm, the BmCDA2 which is highly expressed in epidermis was selected to study by bioinformatics methods, protein expression purification and immunofluorescence localization. The results showed that the two mRNA splicing forms of BmCDA2, namely BmCDA2a and BmCDA2b, were highly expressed in the larval and pupal epidermis, respectively. Both genes had chitin deacetylase catalytic domain, chitin binding domain and low density lipoprotein receptor domain. Western blot showed that the BmCDA2 protein was mainly expressed in the epidermis. Moreover, fluorescence immunolocalization showed that BmCDA2 protein gradually increased and accumulated with the formation of larval new epidermis, suggesting that BmCDA2 may be involved in the formation or assembly of larval new epidermis. The results increased our understandings to the biological functions of BmCDAs, and may facilitate the CDA study of other insects.
Animals
;
Bombyx/metabolism*
;
Metamorphosis, Biological/genetics*
;
Larva/metabolism*
;
Gene Expression
;
Insect Proteins/metabolism*
;
Chitin
10.Reform and practice of Biopharmaceutical Technology Comprehensive Experiments in higher vocational colleges in the context of skills competition.
Yanbin SUN ; Junling LIANG ; Yang JIANG ; Liangjun DONG ; Chuan ZHANG
Chinese Journal of Biotechnology 2023;39(4):1825-1837
Comprehensive experiments course is a bridge for higher vocational students to integrate theoretical knowledge with production practice. The article introduces that our biological pharmacy department is committed to the principles of "promotion of teaching, learning and construction through skills competition so as to integrate education and training". By taking penicillin fermentation process as an example, reform has been made in several aspects including teaching objectives, teaching content and teaching methods. We integrate the practical operation of fermentation equipment with virtual simulation software to develop a two-way interactive course. By reducing the subjective dependence, the quantitative management and evaluation of fermentation process parameter control were put into place, which efficiently integrated the skills competition with practical teaching. Improved teaching performance has been achieved over recent years, which may facilitate the reform and practice of similar courses based on skills competition.
Humans
;
Clinical Competence
;
Learning
;
Students
;
Technology
;
Biological Products


Result Analysis
Print
Save
E-mail