1.The efficacy of photodynamic therapy against Streptococcus mutans biofilm on orthodontic brackets: An in-vitro study.
Maria Angelica Bagadiong BARRAMEDA ; Melanie Ruth M. KARGANILLA ; Josievitz U. TAN-ZAFRA
Acta Medica Philippina 2025;59(Early Access 2025):1-11
BACKGROUND AND OBJECTIVE
Orthodontic brackets predispose dental biofilm accumulation causing caries and gingivitis. Chlorhexidine is an adjunct to mechanical plaque removal, but has side-effects (tooth staining, bacterial resistance) due to long term use. This study tested the efficacy of Photodynamic Therapy, which produces reactive oxygen species, to reduce Streptococcus mutans in dental biofilm on orthodontic brackets.
METHODSA 5-day S. mutans biofilm was grown on forty enamel-bracket specimens. Thirty-nine specimens were randomized to three treatment groups: A. Distilled Water; B. 0.12% Chlorhexidine (CHX); C. Photodynamic Therapy (PDT) using Toluidine Blue O (TBO) as a photosensitizer, activated by red LED (630nm). After treatment, one random specimen from each group was viewed under Environmental Scanning Electron Microscopy (ESEM); the other 12 specimens, biofilms were collected, weighed, and cultured onto BHI agar plates to determine the number of CFU/mg. For baseline evaluation, one clean and one untreated specimens were preserved for ESEM.
RESULTSBased on Tukey HSD test, group A had the most S. mutans (37.0573 CFU/mg) and was significantly different (pCONCLUSION
Both Photodynamic Therapy and 0.12% Chlorhexidine showed a significant reduction of S. mutans in dental biofilm on orthodontic brackets. However, there is no significant difference between them in reducing S. mutans CFU/mg. Photodynamic therapy could be an alternative adjunctive tool to mechanical removal of plaque adhered to orthodontic brackets.
Bacteria ; Photochemotherapy ; Photodynamic Therapy ; Microscopy, Electron, Scanning ; Biofilms ; Orthodontic Brackets ; Chlorhexidine
2.Protein Containing the GGDEF Domain Affects Motility and Biofilm Formation in Vibrio cholerae and is Negatively Regulated by Fur and HapR.
He GAO ; Li Zhi MA ; Qin QIN ; Yao CUI ; Xiao Han MA ; Yi Quan ZHANG ; Biao KAN
Biomedical and Environmental Sciences 2023;36(10):949-958
OBJECTIVE:
This study aimed to investigate whether the VCA0560 gene acts as an active diguanylate cyclase (DGC) in Vibrio cholerae and how its transcription is regulated by Fur and HapR.
METHODS:
The roles of VCA0560 was investigated by utilizing various phenotypic assays, including colony morphological characterization, crystal violet staining, Cyclic di-GMP (c-di-GMP) quantification, and swimming motility assay. The regulation of the VCA0560 gene by Fur and HapR was analyzed by luminescence assay, electrophoretic mobility shift assay, and DNase I footprinting.
RESULTS:
VCA0560 gene mutation did not affect biofilm formation, motility, and c-di-GMP synthesis in V. cholerae, and its overexpression remarkably enhanced biofilm formation and intracellular c-di-GMP level but reduced motility capacity. The transcription of the VCA0560 gene was directly repressed by Fur and the master quorum sensing regulator HapR.
CONCLUSION
Overexpressed VCA0560 functions as an active DGC in V. cholerae, and its transcription is repressed by Fur and HapR.
Vibrio cholerae/genetics*
;
Biofilms
;
Quorum Sensing
;
Mutation
;
Gene Expression Regulation, Bacterial
;
Bacterial Proteins/genetics*
3.Preparation, characterization and activity evaluation of Spirulina-chitooligosaccharides capable of inhibiting biofilms.
Ruijie SUN ; Tong XU ; Yangyang LIU ; Liming ZHANG ; Siming JIAO ; Yuchen ZHANG ; Xiaodong GAO ; Zhuo WANG ; Yuguang DU
Chinese Journal of Biotechnology 2023;39(10):4135-4149
The biofilms formed by pathogenic microorganisms seriously threaten human health and significantly enhance drug resistance, which urgently call for developing drugs specifically targeting on biofilms. Chitooligosaccharides extracted from shrimp and crab shells are natural alkaline oligosaccharides with excellent antibacterial effects. Nevertheless, their inhibition efficacy on biofilms still needs to be improved. Spirulina (SP) is a microalga with negatively charged surface, and its spiral structure facilitates colonization in the depth of the biofilm. Therefore, the complex of Spirulina and chitooligosaccharides may play a synergistic role in killing pathogens in the depth of biofilm. This research first screened chitooligosaccharides with significant bactericidal effects. Subsequently, Spirulina@Chitooligosaccharides (SP@COS complex was prepared by combining chitooligosaccharides with Spirulina through electrostatic adsorption. The binding of the complex was characterized by zeta potential, z-average size, and fluorescence labeling. Ultraviolet-visible spectroscopy (UV-Vis) showed the encapsulation efficiency and the drug loading efficiency reached up to 90% and 16%, respectively. The prepared SP@COS2 exhibited a profound synergistic inhibition effect on bacterial and fungal biofilms, which was mainly achieved by destroying the cell structure of the biofilm. These results demonstrate the potential of Spirulina-chitooligosaccharides complex as a biofilm inhibitor and provide a new idea for addressing the harm of pathogenic microorganisms.
Humans
;
Spirulina
;
Anti-Bacterial Agents/chemistry*
;
Chitosan/pharmacology*
;
Biofilms
;
Chitin/pharmacology*
4.Advances in electrochemically active biofilm of Shewanella oneidensis MR-1.
Chinese Journal of Biotechnology 2023;39(3):881-897
Facing the increasingly severe energy shortage and environmental pollution, electrocatalytic processes using electroactive microorganisms provide a new alternative for achieving environmental-friendly production. Because of its unique respiratory mode and electron transfer ability, Shewanella oneidensis MR-1 has been widely used in the fields of microbial fuel cell, bioelectrosynthesis of value-added chemicals, metal waste treatment and environmental remediation system. The electrochemically active biofilm of S. oneidensis MR-1 is an excellent carrier for transferring the electrons of the electroactive microorganisms. The formation of electrochemically active biofilm is a dynamic and complex process, which is affected by many factors, such as electrode materials, culture conditions, strains and their metabolism. The electrochemically active biofilm plays a very important role in enhancing bacterial environmental stress resistance, improving nutrient uptake and electron transfer efficiency. This paper reviewed the formation process, influencing factors and applications of S. oneidensis MR-1 biofilm in bio-energy, bioremediation and biosensing, with the aim to facilitate and expand its further application.
Bioelectric Energy Sources/microbiology*
;
Biofilms
;
Electrodes
;
Electron Transport
;
Shewanella/metabolism*
5.Antibacterial effect of low-temperature plasma on Enterococcus faecalis in dentinal tubules in vitro.
Ruo Qing ZHONG ; Meng Qian ZHU ; Ying Long LI ; Ji PAN
Journal of Peking University(Health Sciences) 2023;55(1):38-43
OBJECTIVE:
To construct a model of Enterococcus faecalis (E. faecalis) infection in dentinal tubules by gradient centrifugation and to evaluate the antibacterial effect of low-temperature plasma on E. faecalis in dentinal tubules.
METHODS:
Standard dentin blocks of 4 mm×4 mm×2 mm size were prepared from single root canal isolated teeth without caries, placed in the E. faecalis bacterial solution, centrifuged in gradient and incubated for 24 h to establish the model of dentinal tubule infection with E. faecalis. The twenty dentin blocks of were divided into five groups, low-temperature plasma jet treatment for 0, 5 and 10 min, calcium hydroxide paste sealing for 7 d and 2% chlorhexidine gel sealing for 7 d. Scanning electron microscopy and confocal laser scanning microscope were used to assess the infection in the dentinal tubules and the antibacterial effect of low-temperature plasma.
RESULTS:
The results of scanning electron microscopy and confocal laser scanning microscopy showed that after 24 h of incubation by gradient centrifugation, E. faecalis could fully enter the dentinal tubules to a depth of more than 600μm indicating that this method was time-saving and efficient and could successfully construct a model of E. faecalis infection in dentinal tubules. Low-temperature plasma could enter the dentinal tubules and play a role, the structure of E. faecalis was still intact after 5 min of low-temperature plasma treatment, with no obvious damage, and after 10 min of low-temperature plasma treatment, the surface morphology of E. faecalis was crumpled and deformed, the cell wall was seriously collapsed, and the normal physiological morphology was damaged indicating that the majority of E. faecalis was killed in the dentinal tubules. The antibacterial effect of low-temperature plasma treatment for 10 min exceeded that of the calcium hydroxide paste sealing for 7 d and the 2% chlorhexidine gel sealing for 7 d. These two chemicals had difficulty entering deep into the dentinal tubules, and therefore only had a few of antibacterial effect on the bacterial biofilm on the root canal wall, and there was also no significant damage to the E. faecalis bacterial structure.
CONCLUSION
Gradient centrifugation could establish the model of E. faecalis dentin infection successfully. Low-temperature plasma treatment for 10 min could kill E. faecalis in dentinal tubules effectively, which is superior to the calcium hydroxide paste sealing for 7 d and the 2% chlorhexidine gel sealing for 7 d.
Chlorhexidine/pharmacology*
;
Calcium Hydroxide/pharmacology*
;
Enterococcus faecalis/physiology*
;
Temperature
;
Dentin
;
Biofilms
;
Anti-Bacterial Agents/pharmacology*
;
Root Canal Irrigants/pharmacology*
;
Dental Pulp Cavity
6.Levofloxacin combined with cellulase can eradicate bacille Calmette-Guerin biofilm infection.
Zhi Fei ZHANG ; Hong Jian LIAO ; Min YANG ; Can HU ; Yong Hong DU
Journal of Southern Medical University 2023;43(2):257-264
OBJECTIVE:
To investigate the inhibitory effects of levofloxacin (LEV) combined with cellulase against bacille CalmetteGuerin (BCG) biofilms in vitro.
METHODS:
The mature growth cycle of BCG biofilms was determined using the XTT method and crystal violet staining. BCG planktonic bacteria and BCG biofilms were treated with different concentrations of LEV and cellulose alone or jointly, and the changes in biofilm biomass were quantified with crystal violet staining. The mature BCG biofilm was then treated with cellulase alone for 24 h, and after staining with SYTO 9 and Calcofluor White Stain, the number of viable bacteria and the change in cellulose content in the biofilm were observed with confocal laser scanning microscopy. The structural changes of the treated biofilm were observed under scanning electron microscopy.
RESULTS:
The MIC, MBC and MBEC values of LEV determined by broth microdilution method were 4 μg/mL, 8 μg/mL and 1024 μg/mL, respectively. The combined treatment with 1/4×MIC LEV and 2.56, 5.12 or 10.24 U/mL cellulase resulted in a significant reduction in biofilm biomass (P < 0.001). Cellulase treatments at the concentrations of 10.24, 5.12 and 2.56 U/mL all produced significant dispersion effects on mature BCG biofilms (P < 0.001).
CONCLUSION
LEV combined with cellulose can effectively eradicate BCG biofilm infections, suggesting the potential of glycoside hydrolase therapy for improving the efficacy of antibiotics against biofilmassociated infections caused by Mycobacterium tuberculosis.
Levofloxacin/pharmacology*
;
Gentian Violet/pharmacology*
;
BCG Vaccine/pharmacology*
;
Anti-Bacterial Agents/pharmacology*
;
Biofilms
;
Cellulases/pharmacology*
;
Microbial Sensitivity Tests
7.Oligonucleotide drugs and their progress in stomatology.
Hong ZHAO ; Zhi Min ZHANG ; Xin Ying ZOU ; Fei Long REN ; Shuang GAO
Chinese Journal of Stomatology 2023;58(6):603-608
Oligonucleotide drugs have the characteristics of targeting, modifiability and high biosafety. Recent studies have shown that oligonucleotide can be used to make biosensors, vaccine adjuvants, and has the functions of inhibiting alveolar bone resorption, promoting jaw and alveolar bone regeneration, anti-tumor, destroying plaque biofilm, and precise control of drug release. Therefore, it has a broad application prospect in the field of stomatology. This article reviews the classification, action mechanism and research status of oligonucleotide in stomatology. The aim is to provide ideas for further research and application of oligonucleotide.
Humans
;
Alveolar Bone Loss
;
Biofilms
;
Bone Regeneration
;
Oligonucleotides
;
Oral Medicine
8.Research progress on biofilm microecology in chronic suppurative otitis media.
Xin Cheng ZHONG ; Xiao OUYANG ; Yu Bing LIAO ; Ming Zhu TAO ; Jiao PENG ; Zhi Qing LONG ; Xiang Jie GAO ; Ying CAO ; Ming Hua LUO ; Guo Jiang PENG ; Zhi Xiong ZHOU ; Guan Xiong LEI
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(6):621-625
9.In vitro antibacterial and antibiofilm activities of Piper betle L. ethanolic leaf extract on staphylococcus aureus ATCC 29213
Ryan Christopher C. Lao ; Ailyn M. Yabes ; Marohren Tobias-Altura ; Lynn Crisanta R. Panganiban ; Irma R. Makalinao
Acta Medica Philippina 2023;57(12):53-60
Background and Objective:
Staphylococcus aureus is the leading cause of skin and soft tissue infections such as abscesses, furuncles, and cellulitis. Biofilm forming strains of S. aureus have higher incidence of antimicrobial resistance to at least three or more antibiotics and are considered as multidrug resistant. Since S. aureus biofilm-producing strains have higher rates of multidrug and methicillin resistance compared to non-biofilm-producing strains, the need for alternative therapeutic option is important. Furthermore, rates of methicillin-resistant Staphylococcus aureus (MRSA) in Asia remain high. Results of the study may provide support for the clinical uses of P. betle as a topical antibacterial and antiseptic in the treatment and prevention of infections involving the skin, mouth, throat, and indwelling medical devices. Thus, this study aimed to evaluate the in vitro antibacterial and antibiofilm activities of Piper betle L. ethanolic leaf extract (PBE) against a biofilm-forming methicillin-sensitive Staphylococcus aureus ATCC 29213 (MSSA).
Methods:
The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of PBE against MSSA were determined using the agar dilution assay. The biofilm inhibition and eradication assays using crystal violet were done to quantify the antibiofilm activities of PBE on MSSA biofilm.
Results:
PBE showed activity against MSSA in agar dilution assay with MIC and MBC values of 2500 μg/mL and
5000 μg/mL, respectively. At subinhibitory concentrations, PBE showed biofilm inhibition activity at 1250 μg/mL but a lower percent eradication of biofilms as compared to oxacillin was noted.
Conclusion
PBE showed antibacterial activities including biofilm inhibition against methicillin-sensitive Staphylococcus aureus ATCC 29213 (MSSA).
Piper betle
;
Staphylococcus aureus
;
Anti-Bacterial Agents
;
Biofilms
10.Removal effect of disinfection factors in low concentration on Pseudomonas aeruginosa biofilm.
Chinese Journal of Preventive Medicine 2023;57(10):1620-1624
Experimental model of Pseudomonas aeruginosa biofilm was established in vitro by using biofilm reactor. The aim of this study was evaluating the removal effect of two kinds of water flowing through bactericide resin on Pseudomonas aeruginosa biofilm, and exploring the effectiveness of continuous treatment with low concentration disinfection factor on dental unit waterlines. The experimental group selected 1-2 mg/L iodinated resin (IR) filtered water and bromined hydantoin resin (BHR) filtered water with the control group selecting the sterile distilled water. Biofilms were treated by using the immersion method for 3, 7, 10, 20, and 40 days. Total viable count (TVC) and laser confocal microscopy method (CLSM) were selected to evaluate the biofilm removal effect. The result of TVC showed that in group IR, the bacterial clearance after the treatment of 3, 7, 10, and 20 days was lower than 99.9% and unqualified. The bacterial clearance after the treatment of 40 days was 99.9%,which is qualified. In group BHR, it was lower than 99.9% and unqualified after the treatment of 3, 7, and 10 days. It was and 99.99%, 100.00% after the treatment of 20, 40 days, respectively. The result of CLSM showed that before treatment, Pseudomonas aeruginosa biofilm showed a sheet and mass distribution. The bacterial coverage was 19.24%±1.97%. The proportion of viable bacteria was 93.91%±1.39%, and the biofilm matrix coverage was 17.69%±1.11%. After 20 days of treatment, the biofilm was decreased in the IR group, with the biofilm bacterial coverage reducing to 6.77%±1.61%, the proportion of live bacteria reducing to 54.85%±5.65%, and the biofilm matrix coverage reducing to 2.41%±0.85%.There was significant difference from the pre-treatment and the control (F=359.996,P<0.001). No biofilm-like structure was found in the BHR group. After 40 days of treatment, there was still a small amount of biofilm matrix residue in the IR group, with no bacterial coverage observed. The biofilm matrix coverage was 0.67%±0.47% (F=1 021.373,P<0.001). No biofilm-like structure was found in the BHR group. In conclusion, the continuous application of BHR filter water has more advantages in killing microorganisms in biofilms, removing live and dead bacteria and biofilm matrix in biofilms. Treatment water containing corresponding low concentration disinfection factors can play an important role in the field of biofilm control in dental unit waterlines.
Humans
;
Disinfection/methods*
;
Pseudomonas aeruginosa
;
Biofilms
;
Water/pharmacology*


Result Analysis
Print
Save
E-mail