1.Effect of pH on the chelation between strontium ions and decellularized small intestinal submucosal sponge scaffolds.
Yu Ke LI ; Mei WANG ; Lin TANG ; Yu Hua LIU ; Xiao Ying CHEN
Journal of Peking University(Health Sciences) 2023;55(1):44-51
		                        		
		                        			OBJECTIVE:
		                        			To investigate the preparation of decellularized small intestinal submucosa (dSIS) sponge scaffolds with chelated strontium (Sr) ions at different pH values, and to select the appropriate pH values for synthesizing Sr/dSIS scaffolds using the physicochemical properties and biocompatibility of the scaffolds as evaluation indexes.
		                        		
		                        			METHODS:
		                        			(1) Sr/dSIS scaffolds preparation and grouping: After mixing dSIS solution and strontium chloride solution in equal volumes, adjusting pH of the solution to 3, 5, 7, and 9 respectively, porous scaffolds were prepared by freeze-drying method after full reaction at 37℃, which were named Sr/dSIS-3, -5, -7, and -9 respectively, and the dSIS scaffolds were used as the control group. (2) Physicochemical property evaluation: The bulk morphology of the scaffolds was observed in each group, the microscopic morphology analyzed by scanning electron microscopy, and the porosity and pore size determined, the surface elements analyzed by energy spectroscopy, the structure of functional groups analyzed by infrared spectroscopy, the chelation rate determined by atomic spectrophotometry, the water absorption rate detected by using specific gravity method, and the compression strength evaluated by universal mechanical testing machine.(3) Biocompatibility evaluation: The cytotoxicity and proliferative effect to bone mesenchymal stem cells (BMSCs) of each group were evaluated by Calcein-AM/PI double staining method.
		                        		
		                        			RESULTS:
		                        			Scanning electron microscopy showed that the scaffolds of each group had an interconnected three-dimensional porous structure with no statistical difference in pore size and porosity. Energy spectrum analysis showed that strontium could be detected in Sr/dSIS-5, -7 and -9 groups, and strontium was uniformly distributed in the scaffolds. Functional group analysis further supported the formation of chelates in the Sr/dSIS-5, -7 and -9 groups. Chelation rate analysis showed that the Sr/dSIS-7 group had the highest strontium chelation rate, which was statistically different from the other groups (P < 0.05). The scaffolds in all the groups had good water absorption. The scaffolds in Sr/dSIS-5, -7 and -9 groups showed significantly improved mechanical properties compared with the control group (P < 0.05). The scaffolds in all the groups had good biocompatibility, and the Sr/dSIS-7 group showed the best proliferation of BMSCs.
		                        		
		                        			CONCLUSION
		                        			When pH was 7, the Sr/dSIS scaffolds showed the highest strontium chelation rate and the best proliferation effect of BMSCs, which was the ideal pH value for the preparation of the Sr/dSIS scaffolds.
		                        		
		                        		
		                        		
		                        			Tissue Scaffolds/chemistry*
		                        			;
		                        		
		                        			Biocompatible Materials
		                        			;
		                        		
		                        			Strontium/pharmacology*
		                        			;
		                        		
		                        			Ions
		                        			;
		                        		
		                        			Hydrogen-Ion Concentration
		                        			;
		                        		
		                        			Tissue Engineering/methods*
		                        			;
		                        		
		                        			Porosity
		                        			
		                        		
		                        	
2.Progress in antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants.
Peng LIU ; Bo FAN ; Lei ZOU ; Lijun LÜ ; Qiuming GAO
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(10):1300-1313
		                        		
		                        			OBJECTIVE:
		                        			To review antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants, so as to provide reference for subsequent research.
		                        		
		                        			METHODS:
		                        			The related research literature on antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants in recent years was reviewed, and the research progress was summarized based on different kinds of antibacterial substances and osteogenic active substances.
		                        		
		                        			RESULTS:
		                        			At present, the antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants includes: ① Combined coating strategy of antibiotics and osteogenic active substances. It is characterized in that antibiotics can be directly released around titanium-based implants, which can improve the bioavailability of drugs and reduce systemic toxicity. ② Combined coating strategy of antimicrobial peptides and osteogenic active substances. The antibacterial peptides have a wide antibacterial spectrum, and bacteria are not easy to produce drug resistance to them. ③ Combined coating strategy of inorganic antibacterial agent and osteogenic active substances. Metal ions or metal nanoparticles antibacterial agents have broad-spectrum antibacterial properties and various antibacterial mechanisms, but their high-dose application usually has cytotoxicity, so they are often combined with substances that osteogenic activity to reduce or eliminate cytotoxicity. In addition, inorganic coatings such as silicon nitride, calcium silicate, and graphene also have good antibacterial and osteogenic properties. ④ Combined coating strategy of metal organic frameworks/osteogenic active substances. The high specific surface area and porosity of metal organic frameworks can effectively package and transport antibacterial substances and bioactive molecules. ⑤ Combined coating strategy of organic substances/osteogenic active substancecs. Quaternary ammonium compounds, polyethylene glycol, N-haloamine, and other organic compounds have good antibacterial properties, and are often combined with hydroxyapatite and other substances that osteogenic activity.
		                        		
		                        			CONCLUSION
		                        			The factors that affect the antibacterial and osteogenesis properties of titanium-based implants mainly include the structure and types of antibacterial substances, the structure and types of osteogenesis substances, and the coating process. At present, there is a lack of clinical verification of various strategies for antibacterial/osteogenesis dual-functional surface modification of titanium-based implants. The optimal combination, ratio, dose-effect mechanism, and corresponding coating preparation process of antibacterial substances and bone-active substances are needed to be constantly studied and improved.
		                        		
		                        		
		                        		
		                        			Anti-Bacterial Agents/pharmacology*
		                        			;
		                        		
		                        			Coated Materials, Biocompatible/chemistry*
		                        			;
		                        		
		                        			Metal-Organic Frameworks/pharmacology*
		                        			;
		                        		
		                        			Osteogenesis
		                        			;
		                        		
		                        			Surface Properties
		                        			;
		                        		
		                        			Titanium/pharmacology*
		                        			;
		                        		
		                        			Prostheses and Implants
		                        			
		                        		
		                        	
3.Application of silk fibroin coatings for biomaterial surface modification: a silk road for biomedicine.
Jinxing HU ; Zhiwei JIANG ; Jing ZHANG ; Guoli YANG
Journal of Zhejiang University. Science. B 2023;24(11):943-956
		                        		
		                        			
		                        			Silk fibroin (SF) as a natural biopolymer has become a popular material for biomedical applications due to its minimal immunogenicity, tunable biodegradability, and high biocompatibility. Nowadays, various techniques have been developed for the applications of SF in bioengineering. Most of the literature reviews focus on the SF-based biomaterials and their different forms of applications such as films, hydrogels, and scaffolds. SF is also valuable as a coating on other substrate materials for biomedicine; however, there are few reviews related to SF-coated biomaterials. Thus, in this review, we focused on the surface modification of biomaterials using SF coatings, demonstrated their various preparation methods on substrate materials, and introduced the latest procedures. The diverse applications of SF coatings for biomedicine are discussed, including bone, ligament, skin, mucosa, and nerve regeneration, and dental implant surface modification. SF coating is conducive to inducing cell adhesion and migration, promoting hydroxyapatite (HA) deposition and matrix mineralization, and inhibiting the Notch signaling pathway, making it a promising strategy for bone regeneration. In addition, SF-coated composite scaffolds can be considered prospective candidates for ligament regeneration after injury. SF coating has been proven to enhance the mechanical properties of the substrate material, and render integral stability to the dressing material during the regeneration of skin and mucosa. Moreover, SF coating is a potential strategy to accelerate nerve regeneration due to its dielectric properties, mechanical flexibility, and angiogenesis promotion effect. In addition, SF coating is an effective and popular means for dental implant surface modification to promote osteogenesis around implants made of different materials. Thus, this review can be of great benefit for further improvements in SF-coated biomaterials, and will undoubtedly contribute to clinical transformation in the future.
		                        		
		                        		
		                        		
		                        			Biocompatible Materials/chemistry*
		                        			;
		                        		
		                        			Silk/chemistry*
		                        			;
		                        		
		                        			Fibroins/pharmacology*
		                        			;
		                        		
		                        			Dental Implants
		                        			;
		                        		
		                        			Osteogenesis
		                        			;
		                        		
		                        			Tissue Scaffolds/chemistry*
		                        			;
		                        		
		                        			Tissue Engineering/methods*
		                        			
		                        		
		                        	
4.Biomechanical and biocompatible enhancement of reinforced calcium phosphate cement via RGD peptide grafted chitosan nanofibers.
Yang HUANG ; Jinsong KONG ; Xiaokang GONG ; Xin ZHENG ; Haibao WANG ; Jianwei RUAN
Journal of Zhejiang University. Medical sciences 2017;46(6):593-599
		                        		
		                        			
		                        			Objective: To analysis the biomechanical and biocompatible properties of calcium phosphate cement (CPC) enhanced by chitosan short nanofibers(CSNF) and Arg-Gly-Asp (RGD). Methods: Chitosan nanofibers were prepared by electrospinning, and cut into short fibers by high speed dispersion. CPC with calcium phosphorus ratio of 1.5:1 was prepared by Biocement D method. The composition and structure of CPC, CSNF, RGD modified CSNF (CSNF-RGD), CSNF enhanced CPC (CPC-CSNF), RGD modified CPC-CSNF (CPC-CSNF-RGD) were observed by infrared spectrum, X-ray diffraction (XRD) and scan electron microscopy (SEM). The mechanical properties were measured by universal mechanical testing instrument. The adhesion and proliferation of MC3T3 cells were assessed using immunofluorescence staining and MTT method. Results: The distribution of CSNF in the scaffold was homogeneous, and the porous structure between the nanofibers was observed by SEM. The infrared spectrum showed the characteristic peaks at 1633 nm and 1585 nm, indicating that RGD was successfully grafted on chitosan nanofibers. The XRD pattern showed that the bone cement had a certain curability. The stain-stress test showed that break strengths were (17.74±0.54) MPa for CPC-CSNF and (16.67±0.56) MPa for CPCP-CSNF-RGD, both were higher than that of CPC(all P<0.05). The immunofluorescence staining and MTT results indicated that MC3T3 cells grew better on CPC-CSNF-RGD after 240 min of culture(all P<0.05). Conclusion: CSNF-RGD can improve the biomechanical property and biocompatibility of CPC, indicating its potential application in bone tissue repair.
		                        		
		                        		
		                        		
		                        			3T3 Cells
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Biocompatible Materials
		                        			;
		                        		
		                        			Bone Cements
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Calcium Phosphates
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Chitosan
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Nanofibers
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Oligopeptides
		                        			;
		                        		
		                        			chemistry
		                        			
		                        		
		                        	
5.Three-dimensional Printed Scaffolds with Gelatin and Platelets EnhancePreosteoblast Growth Behavior and the Sustained-release Effect of Growth Factors.
Wei ZHU ; Chi XU ; Bu-Peng MA ; Zhi-Bo ZHENG ; Yu-Long LI ; Qi MA ; Guo-Liang WU ; Xi-Sheng WENG
Chinese Medical Journal 2016;129(21):2576-2581
BACKGROUNDThree-dimensional (3D) printing technology holds great promise for treating diseases or injuries that affect human bones with enhanced performance over traditional techniques. Different patterns of design can lead to various mechanical properties and biocompatibility to various degrees. However, there is still a long way to go before we can fully take advantage of 3D printing technologies.
METHODSThis study tailored 3D printed scaffolds with gelatin and platelets to maximize bone regeneration. The scaffolds were designed with special internal porous structures that can allow bone tissue and large molecules to infiltrate better into the scaffolds. They were then treated with gelatin and platelets via thermo-crosslinking and freeze-drying, respectively. Vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-β1 were measured at different time points after the scaffolds had been made. Cell proliferation and cytotoxicity were determined via cell counting kit-8 (CCK-8) assay.
RESULTSThere was a massive boost in the level of VEGF and TGF-β1 released by the scaffolds with gelatin and platelets compared to that of scaffolds with only gelatin. After 21 days of culture, the CCK-8 cell counts of the control group and treated group were significantly higher than that of the blank group (P < 0.05). The cytotoxicity test also indicated the safety of the scaffolds.
CONCLUSIONSOur experiments confirmed that the 3D printed scaffolds we had designed could provide a sustained-release effect for growth factors and improve the proliferation of preosteoblasts with little cytotoxicity in vitro. They may hold promise as bone graft substitute materials in the future.
3T3 Cells ; Animals ; Biocompatible Materials ; chemistry ; Cell Proliferation ; drug effects ; Cell Survival ; drug effects ; Gelatin ; chemistry ; Mice ; Printing, Three-Dimensional ; Tissue Engineering ; methods ; Tissue Scaffolds ; chemistry ; Transforming Growth Factor beta1 ; chemistry ; pharmacology ; Vascular Endothelial Growth Factor A ; chemistry ; pharmacology
6.Tricaicium phosphate complex pre-loaded with bone morphogenetic protein-2 or platelet derived growth factor-BB for repairing critical-size cranial defects in SD rats.
Rui-Xuan HE ; Jian-Bin XIAO ; Bing SONG ; Zhi-Hui HUANG ; Liang ZHAO
Journal of Southern Medical University 2016;36(3):345-350
OBJECTIVETo observe the effect of a new biomaterial in promoting the bone regeneration for repairing critical-size cranial defects in SD rats.
METHODSCritical-size cranial defects were induced in 3-month-old male Sprague-Dawley rats and repaired with the implants of calcium phosphate from growth factor enhanced matrix 21 (CaPfromGEM21, control), CaPfromGEM21 preloaded with 10 ng bone morphogenetic protein-2 (BMP-2), CaPfromGEM21 preloaded with 100 ng BMP-2, CaPfromGEM21 preloaded with 0.3 µg platelet-derived growth factor-BB (PDGF-BB), or CaPfromGEM21 preloaded with 3 µg PDGF-BB. The defects were examined 6 weeks after the surgery with X-ray, micro-CT, HE staining and quantitative assessments.
RESULTSX-ray showed defect repair in all the groups. The fracture line became obscure, and the defects were almost fully repaired by the regenerated bone tissues in PDGF-BB group. Micro-CT demonstarted new bone formation in the defects. The new bone volume was significantly greater in PDGF-BB groups than in BMP-2 groups (P<0.05). HE staining revealed the presence of new bones in the defects and new vessels in and around the new bones without inflammatory cells. The new bone area fraction was significantly greater in 10 ng BMP-2 group and 0.3 µg PDGF-BB group than in the control group (P<0.05), and the new vessel density was similar in the all the 4 cytokine-preloaded groups and all significantly greater than that in the blank and CaPfromGEM21 control group (P<0.05).
CONCLUSIONCaPfromGem21 combined with BMP-2 or PDGF-BB has good biocompatibility and can better promote bone regeneration for repairing bone defects.
Animals ; Biocompatible Materials ; Bone Morphogenetic Protein 2 ; pharmacology ; Bone Regeneration ; drug effects ; Calcium Phosphates ; pharmacology ; Male ; Prostheses and Implants ; Proto-Oncogene Proteins c-sis ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Skull ; pathology ; Wound Healing
7.Effects of laser solid forming of porous titanium on proliferation of osteoblast and RANKL/OPG expression.
Hui CHEN ; Shanshan DU ; Ping ZHEN ; Xusheng LI ; Xiaoyan LIANG ; Lijuan FAN ; Jie JIANG ; Haiou YANG ; Jun LIU
Journal of Central South University(Medical Sciences) 2016;41(12):1278-1284
		                        		
		                        			
		                        			To evaluate the effect of laser solid forming (LSF) of porous titanium on receptor activator of NF-κB ligand (RANKL)/osteoprorotegerin (OPG) expression and osteoblast cells growth.
 Methods: The DMEM and sterile saline were used for porous titanium extract. The osteoblast cells were cultured in the extract while equal amount of  DMEM and sterile saline were added to the control group. The growth of the cells were observed under an inverted phase contrast microscope. MTT was used to detect the growth inhibitory rates. The adhesion capacity of osteoblasts were measured. The growth in the material surface was examined by the electron microscope, and the expressions of RANKL and OPG were determined by Westen blot.
 Results: At the first day, the osteoblast proliferation rate was significantly different (P<0.05), at the fourth and seventh day, the osteoblast proliferation rate was not significantly affected in the LSF group (P>0.05); at each time point, the osteoblast proliferation rate were significantly different between the two groups (P<0.05). Compared with the control group, RANKL and OPG protein expression were not significantly different (P>0.05). The laser solid forming of porous titanium showed well bone compatibility.
 Conclusion: The porous titanium did not affect osteoblast proliferation due to its well bone compatibility. It did not affect the OPG/RANKL/RANK-axis system of bone metabolism, exibiting a wide applicable prospect for tissue engineering.
		                        		
		                        		
		                        		
		                        			Biocompatible Materials
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Cell Adhesion
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Culture Media
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Ligands
		                        			;
		                        		
		                        			Osteoblasts
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Osteogenesis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Osteoprotegerin
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Porosity
		                        			;
		                        		
		                        			Receptor Activator of Nuclear Factor-kappa B
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Tissue Engineering
		                        			;
		                        		
		                        			instrumentation
		                        			;
		                        		
		                        			Tissue Scaffolds
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Titanium
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
8.Inhibiting Smooth Muscle Cell Proliferation via Immobilization of Heparin/Fibronectin Complexes on Titanium Surfaces.
Gui Cai LI ; Qi Fei XU ; Ping YANG
Biomedical and Environmental Sciences 2015;28(5):378-382
		                        		
		                        			
		                        			The aim of this study was to investigate the inhibitory effect of heparin/fibronectin (Hep/Fn) complexes on neointimal hyperplasia following endovascular intervention. Hep/Fn complexes were immobilized onto titanium (Ti) surfaces, with subsequent X-ray photoelectron spectroscopy (XPS), Toluidine Blue O (TBO) and immunohistochemistry methods were used to characterize surface properties. Smooth muscle cell (SMC) cultures were used to evaluate the effect of Hep/Fn complexes on SMC proliferation. Results showed that Hep/Fn complexes successfully immobilized onto Ti surfaces and resulted in an inhibition of SMC proliferation. This study suggests that Hep/Fn surface-immobilized biomaterials develop as a new generation of biomaterials to prevent neointimal hyperplasia, particularly for use in cardiovascular implants.
		                        		
		                        		
		                        		
		                        			Biocompatible Materials
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Fibronectins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Heparin
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immobilized Proteins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Muscle, Smooth, Vascular
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Myocytes, Smooth Muscle
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Surface Properties
		                        			;
		                        		
		                        			Titanium
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Umbilical Arteries
		                        			
		                        		
		                        	
9.Biomaterials as carrier, barrier and reactor for cell-based regenerative medicine.
Chunxiao QI ; Xiaojun YAN ; Chenyu HUANG ; Alexander MELERZANOV ; Yanan DU
Protein & Cell 2015;6(9):638-653
		                        		
		                        			
		                        			Cell therapy has achieved tremendous success in regenerative medicine in the past several decades. However, challenges such as cell loss, death and immune-rejection after transplantation still persist. Biomaterials have been designed as carriers to deliver cells to desirable region for local tissue regeneration; as barriers to protect transplanted cells from host immune attack; or as reactors to stimulate host cell recruitment, homing and differentiation. With the assistance of biomaterials, improvement in treatment efficiency has been demonstrated in numerous animal models of degenerative diseases compared with routine free cell-based therapy. Emerging clinical applications of biomaterial assisted cell therapies further highlight their great promise in regenerative therapy and even cure for complex diseases, which have been failed to realize by conventional therapeutic approaches.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Biocompatible Materials
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Bioreactors
		                        			;
		                        		
		                        			Cell- and Tissue-Based Therapy
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Drug Carriers
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Regenerative Medicine
		                        			;
		                        		
		                        			methods
		                        			
		                        		
		                        	
10.Controlled release by novel lysostaphin-loaded hydroxyapatite/chitosan composites.
Jin-Cheng WANG ; Bai XUE ; Kui-Kui GE ; Yi-Han WANG ; Guo-Dong LI ; Qing-Shan HUANG
Acta Pharmaceutica Sinica 2014;49(9):1331-1339
		                        		
		                        			
		                        			Lysostaphin is highly effective on eliminating methicillin resistant Staphylococcus aureus (MRSA). In order to achieve controlled release of lysostaphin, a biocompatible drug carrier is needed. Hydroxyapatite/chitosan (HA/CS) composites were chosen to carry lysostaphin and sample composites with different weight ratios of HA to CS, including 80/20, 70/30, 60/40, and 40/60, were prepared. Multiple analyses were performed to determine the structural and physicochemical properties of the composites, including scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. We immersed HA/CS composites loaded with 1 wt% lysostaphin to test in vitro release activity and cultured MC3T3-E1 cells to carry out biocompatibility test. The result of the release behavior of the composites revealed that the controlled release of lysostaphin from 60/40 HA/CS composites was the highest release rate of (87.4 ± 2.8)%, which lasted for 120 hours. In biocompatibility testing, MC3T3-E1 cells were able to proliferate on the surface of these composites, and the extract liquid from the composites could increase the growth of the cells. These results demonstrate the controlled release of lysostaphin from HA/CS composites and their biocompatibility, suggesting the potential application of these composites to bone injury and infection applications.
		                        		
		                        		
		                        		
		                        			3T3 Cells
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Biocompatible Materials
		                        			;
		                        		
		                        			Chitosan
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Delayed-Action Preparations
		                        			;
		                        		
		                        			Drug Carriers
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Durapatite
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Lysostaphin
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Materials Testing
		                        			;
		                        		
		                        			Methicillin-Resistant Staphylococcus aureus
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Microscopy, Electron, Scanning
		                        			;
		                        		
		                        			X-Ray Diffraction
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail