1.Role of dendritic cells in MYD88-mediated immune recognition and osteoinduction initiated by the implantation of biomaterials.
Zifan ZHAO ; Qin ZHAO ; Hu CHEN ; Fanfan CHEN ; Feifei WANG ; Hua TANG ; Haibin XIA ; Yongsheng ZHOU ; Yuchun SUN
International Journal of Oral Science 2023;15(1):31-31
Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects. Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of osteoinduction of bone substitute materials. Previous studies have mainly focused on innate immune cells such as macrophages. In our previous work, we found that T lymphocytes, as adaptive immune cells, are also essential in the osteoinduction procedure. As the most important antigen-presenting cell, whether dendritic cells (DCs) can recognize non-antigen biomaterials and participate in osteoinduction was still unclear. In this study, we found that surgical trauma associated with materials implantation induces necrocytosis, and this causes the release of high mobility group protein-1 (HMGB1), which is adsorbed on the surface of bone substitute materials. Subsequently, HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic cells, and the inflammatory response was activated. Finally, activated DCs release regeneration-related chemokines, recruit mesenchymal stem cells, and initiate the osteoinduction process. This study sheds light on the immune-regeneration process after bone substitute materials implantation, points out a potential direction for the development of bone substitute materials, and provides guidance for the development of clinical surgical methods.
Biocompatible Materials/metabolism*
;
HMGB1 Protein/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Bone Substitutes/metabolism*
;
Dendritic Cells/metabolism*
2.Spatiotemporal cellular dynamics and molecular regulation of tooth root ontogeny.
Pengcheng RAO ; Junjun JING ; Yi FAN ; Chenchen ZHOU
International Journal of Oral Science 2023;15(1):50-50
Tooth root development involves intricate spatiotemporal cellular dynamics and molecular regulation. The initiation of Hertwig's epithelial root sheath (HERS) induces odontoblast differentiation and the subsequent radicular dentin deposition. Precisely controlled signaling pathways modulate the behaviors of HERS and the fates of dental mesenchymal stem cells (DMSCs). Disruptions in these pathways lead to defects in root development, such as shortened roots and furcation abnormalities. Advances in dental stem cells, biomaterials, and bioprinting show immense promise for bioengineered tooth root regeneration. However, replicating the developmental intricacies of odontogenesis has not been resolved in clinical treatment and remains a major challenge in this field. Ongoing research focusing on the mechanisms of root development, advanced biomaterials, and manufacturing techniques will enable next-generation biological root regeneration that restores the physiological structure and function of the tooth root. This review summarizes recent discoveries in the underlying mechanisms governing root ontogeny and discusses some recent key findings in developing of new biologically based dental therapies.
Female
;
Humans
;
Tooth Root/metabolism*
;
Odontogenesis
;
Epithelial Cells
;
Cell Differentiation
;
Biocompatible Materials/metabolism*
3.Research progress in leveraging biomaterials for enhancing NK cell immunotherapy.
Journal of Zhejiang University. Medical sciences 2023;52(3):267-278
NK cell immunotherapy is a promising antitumor therapeutic modality after the development of T cell immunotherapy. Structural modification of NK cells with biomaterials may provide a precise, efficient, and low-cost strategy to enhance NK cell immunotherapy. The biomaterial modification of NK cells can be divided into two strategies: surface engineering with biomaterials and intracellular modification. The surface engineering strategies include hydrophobic interaction of lipids, receptor-ligand interaction between membrane proteins, covalent binding to amino acid residues, click reaction and electrostatic interaction. The intracellular modification strategies are based on manipulation by nanotechnology using membranous materials from various sources of NK cells (such as exosome, vesicle and cytomembranes). Finally, the biomaterials-based strategies regulate the recruitment, recognition and cytotoxicity of NK cells in the solid tumor site in situ to boost the activity of NK cells in the tumor. This article reviews the recent research progress in enhancing NK cell therapy based on biomaterial modification, to provide a reference for further researches on engineering NK cell therapy with biomaterials.
Humans
;
Biocompatible Materials/metabolism*
;
Immunotherapy
;
Killer Cells, Natural/metabolism*
;
Immunotherapy, Adoptive
;
Neoplasms/therapy*
4.Research advances on the application of silk fibroin biomaterials in wound repair.
Chinese Journal of Burns 2022;38(10):973-977
Silk fibroin, a natural fibrin, is a suitable matrix biomaterial for wound repair due to its unique properties such as good biocompatibility, tunable biodegradation and mechanical properties, low host inflammatory response, low cost, ease of fabrication, etc. Silk fibroin can be used alone or in combination with other materials to construct various dressings including scaffolds, hydrogels, films, smart mats, and microneedles, which can meet the needs of different wound repair and regulate the wound repair process. Thus, the application research of silk fibroin in skin tissue engineering has increased dramatically. Compared with other natural materials, silk fibroin promotes tissue regeneration and wound repair by improving cell proliferation, migration, and differentiation behavior at different stages, showing unique advantages in different dimensions. Based on the development of silk fibroin wound repair materials in the recent years, this review focuses on the mechanism and application prospect of silk fibroin and its composite materials in wound repair.
Fibroins/metabolism*
;
Biocompatible Materials/therapeutic use*
;
Tissue Engineering
;
Hydrogels
;
Fibrin
;
Tissue Scaffolds
5.Research advances on biomaterials for the delivery of growth factors to regulate wound repair.
Ting Ting WENG ; Cheng Hao CAI ; Chun Mao HAN ; Xin Gang WANG
Chinese Journal of Burns 2022;38(7):691-696
Wound repair is a highly coordinated and mutually regulated complex process involving various kinds of cells, extracellular matrices and cytokines. A variety of growth factors play an important regulatory role in wound healing, and it is critical to achieve effective delivery and sustained function of growth factors. In recent years, the application of biomaterials in tissue engineering has shown great potential, and the effective delivery of growth factors by biomaterials has attracted increasing attention. Based on this, this paper introduces the mechanism of related growth factors in the process of wound healing, focusing on the recent progress of biomaterial delivery of growth factors to accelerate wound healing, in order to provide new enlightenment for clinical wound treatment.
Biocompatible Materials/metabolism*
;
Extracellular Matrix/metabolism*
;
Intercellular Signaling Peptides and Proteins/therapeutic use*
;
Tissue Engineering
;
Wound Healing
6.The role of dendritic cells in the immunomodulation to implanted biomaterials.
Siyuan WANG ; Yanqi CHEN ; Zhaoting LING ; Jia LI ; Jun HU ; Fuming HE ; Qianming CHEN
International Journal of Oral Science 2022;14(1):52-52
Considering the substantial role played by dendritic cells (DCs) in the immune system to bridge innate and adaptive immunity, studies on DC-mediated immunity toward biomaterials principally center on their adjuvant effects in facilitating the adaptive immunity of codelivered antigens. However, the effect of the intrinsic properties of biomaterials on dendritic cells has not been clarified. Recently, researchers have begun to investigate and found that biomaterials that are nonadjuvant could also regulate the immune function of DCs and thus affect subsequent tissue regeneration. In the case of proteins adsorbed onto biomaterial surfaces, their intrinsic properties can direct their orientation and conformation, forming "biomaterial-associated molecular patterns (BAMPs)". Thus, in this review, we focused on the intrinsic physiochemical properties of biomaterials in the absence of antigens that affect DC immune function and summarized the underlying signaling pathways. Moreover, we preliminarily clarified the specific composition of BAMPs and the interplay between some key molecules and DCs, such as heat shock proteins (HSPs) and high mobility group box 1 (HMGB1). This review provides a new direction for future biomaterial design, through which modulation of host immune responses is applicable to tissue engineering and immunotherapy.
Biocompatible Materials/metabolism*
;
Dendritic Cells/metabolism*
;
Tissue Engineering
;
Immunomodulation
;
Adaptive Immunity
7.Biodegradation properties of multi-laminated small intestinal submucosa.
Wei Yi WU ; Bo Wen LI ; Yu Hua LIU ; Xin Zhi WANG
Journal of Peking University(Health Sciences) 2020;52(3):564-569
OBJECTIVE:
To study the biodegradation properties of multi-laminated small intestinal submucosa (mSIS) through in vitro and in vivo experiments, comparing with Bio-Gide, the most widely used collagen membrane in guided bone regeneration (GBR) technique, for the purpose of providing basis to investigate whether mSIS meets the requirements of GBR in dental clinics.
METHODS:
The degradation properties were evaluated in vitro and in vivo. In vitro degradation was performed using prepared collagenase solution. Morphology of mSIS and Bio-Gide in degradation solution were observed and the degradation rate was calculated at different time points. In in vivo experiments, nine New Zealand rabbits were used for subcutaneous implantation and were divided into three groups according to observation intervals. Six unconnected subcutaneous pouches were made on the back of each animal and were embedded with mSIS and Bio-Gide respectively. At the end of weeks 4, 8, and 12 after operation, gross observation and HE staining were used to evaluate the degree of degradation and histocompatibility.
RESULTS:
In vitro degradation experiments showed that mSIS membrane was completely degraded at the end of 12 days, while Bio-Gide was degraded at the end of 7 days. Besides, mSIS maintained its shape for longer time in the degradation solution than Bio-Gide, indicating that mSIS possessed longer degradation time, and had better ability to maintain space than Bio-Gide. In vivo biodegradation indicated that after 4 weeks of implantation, mSIS remained intact. Microscopic observation showed that collagen fibers were continuous with a few inflammatory cells that infiltrated around the membrane. Bio-Gide was basically intact and partially adhered with the surrounding tissues. HE staining showed that collagen fibers were partly fused with surrounding tissues with a small amount of inflammatory cells that infiltrated as well. Eight weeks after operation, mSIS was still intact, and was partly integrated with connective tissues, whereas Bio-Gide membrane was mostly broken and only a few residual fibers could be found under microscope. Only a small amount of mSIS debris could be observed 12 weeks after surgery, and Bio-Gide could hardly be found by naked eye and microscopic observation at the same time.
CONCLUSION
In vitro degradation time of mSIS is longer than that of Bio-Gide, and the space-maintenance ability of mSIS is better. The in vivo biodegradation time of subcutaneous implantation of mSIS is about 12 weeks and Bio-Gide is about 8 weeks, both of which possess good biocompatibility.
Animals
;
Biocompatible Materials/metabolism*
;
Bone Regeneration
;
Connective Tissue
;
Intestinal Mucosa
;
Intestine, Small
;
Membranes, Artificial
;
Rabbits
8.Hybrid polymer biomaterials for bone tissue regeneration.
Bo LEI ; Baolin GUO ; Kunal J RAMBHIA ; Peter X MA
Frontiers of Medicine 2019;13(2):189-201
Native tissues possess unparalleled physiochemical and biological functions, which can be attributed to their hybrid polymer composition and intrinsic bioactivity. However, there are also various concerns or limitations over the use of natural materials derived from animals or cadavers, including the potential immunogenicity, pathogen transmission, batch to batch consistence and mismatch in properties for various applications. Therefore, there is an increasing interest in developing degradable hybrid polymer biomaterials with controlled properties for highly efficient biomedical applications. There have been efforts to mimic the extracellular protein structure such as nanofibrous and composite scaffolds, to functionalize scaffold surface for improved cellular interaction, to incorporate controlled biomolecule release capacity to impart biological signaling, and to vary physical properties of scaffolds to regulate cellular behavior. In this review, we highlight the design and synthesis of degradable hybrid polymer biomaterials and focus on recent developments in osteoconductive, elastomeric, photoluminescent and electroactive hybrid polymers. The review further exemplifies their applications for bone tissue regeneration.
Animals
;
Biocompatible Materials
;
Bone Regeneration
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
metabolism
;
Regenerative Medicine
;
Tissue Engineering
;
Tissue Scaffolds
9.Combination of biomaterial transplantation and genetic enhancement of intrinsic growth capacities to promote CNS axon regeneration after spinal cord injury.
Frontiers of Medicine 2019;13(2):131-137
The inhibitory environment that surrounds the lesion site and the lack of intrinsic regenerative capacity of the adult mammalian central nervous system (CNS) impede the regrowth of injured axons and thereby the reestablishment of neural circuits required for functional recovery after spinal cord injuries (SCI). To circumvent these barriers, biomaterial scaffolds are applied to bridge the lesion gaps for the regrowing axons to follow, and, often by combining stem cell transplantation, to enable the local environment in the growth-supportive direction. Manipulations, such as the modulation of PTEN/mTOR pathways, can also enhance intrinsic CNS axon regrowth after injury. Given the complex pathophysiology of SCI, combining biomaterial scaffolds and genetic manipulation may provide synergistic effects and promote maximal axonal regrowth. Future directions will primarily focus on the translatability of these approaches and promote therapeutic avenues toward the functional rehabilitation of patients with SCIs.
Animals
;
Axons
;
physiology
;
Biocompatible Materials
;
Genetic Enhancement
;
methods
;
Humans
;
Nerve Regeneration
;
PTEN Phosphohydrolase
;
metabolism
;
Recovery of Function
;
Spinal Cord Injuries
;
physiopathology
;
Tissue Engineering
;
methods
;
Tissue Scaffolds
10.Biomechanical and biocompatible enhancement of reinforced calcium phosphate cement via RGD peptide grafted chitosan nanofibers.
Yang HUANG ; Jinsong KONG ; Xiaokang GONG ; Xin ZHENG ; Haibao WANG ; Jianwei RUAN
Journal of Zhejiang University. Medical sciences 2017;46(6):593-599
Objective: To analysis the biomechanical and biocompatible properties of calcium phosphate cement (CPC) enhanced by chitosan short nanofibers(CSNF) and Arg-Gly-Asp (RGD). Methods: Chitosan nanofibers were prepared by electrospinning, and cut into short fibers by high speed dispersion. CPC with calcium phosphorus ratio of 1.5:1 was prepared by Biocement D method. The composition and structure of CPC, CSNF, RGD modified CSNF (CSNF-RGD), CSNF enhanced CPC (CPC-CSNF), RGD modified CPC-CSNF (CPC-CSNF-RGD) were observed by infrared spectrum, X-ray diffraction (XRD) and scan electron microscopy (SEM). The mechanical properties were measured by universal mechanical testing instrument. The adhesion and proliferation of MC3T3 cells were assessed using immunofluorescence staining and MTT method. Results: The distribution of CSNF in the scaffold was homogeneous, and the porous structure between the nanofibers was observed by SEM. The infrared spectrum showed the characteristic peaks at 1633 nm and 1585 nm, indicating that RGD was successfully grafted on chitosan nanofibers. The XRD pattern showed that the bone cement had a certain curability. The stain-stress test showed that break strengths were (17.74±0.54) MPa for CPC-CSNF and (16.67±0.56) MPa for CPCP-CSNF-RGD, both were higher than that of CPC(all P<0.05). The immunofluorescence staining and MTT results indicated that MC3T3 cells grew better on CPC-CSNF-RGD after 240 min of culture(all P<0.05). Conclusion: CSNF-RGD can improve the biomechanical property and biocompatibility of CPC, indicating its potential application in bone tissue repair.
3T3 Cells
;
Animals
;
Biocompatible Materials
;
Bone Cements
;
chemistry
;
metabolism
;
pharmacology
;
Calcium Phosphates
;
metabolism
;
Cell Proliferation
;
drug effects
;
Chitosan
;
chemistry
;
pharmacology
;
Mice
;
Nanofibers
;
chemistry
;
Oligopeptides
;
chemistry

Result Analysis
Print
Save
E-mail