1.Monitoring results of mosquito-ovitraps placed in different orientations in multi-storey residential areas
Caixiong LIU ; Bin GE ; Haibing ZHANG ; Lin WANG ; Tao YANG ; Yujiao WEI ; Haiying XIE ; Yu ZHANG ; Hongxia LIU ; Juntao SHEN
Shanghai Journal of Preventive Medicine 2025;37(2):109-113
ObjectiveTo find out whether there is any difference in the monitoring results of mosq-ovitraps placed in different orientations in multi-storey residential areas, so as to provide a scientific basis for routine and emergency monitoring of Aedes albopictus with mosq-ovitraps in residential areas. MethodsFrom July 6th to October 26th 2023, one mosquito ovitrap was set up in each of the 4 orientations of east, south, west and north around the buildings in a multi-storey residential area in Jinhui Town, Fengxian District, Shanghai. Data was collected and recorded 72 hours after placement. The chi-square test was used to compare the mosquito ovitrap indices (MOIs) of two independent samples, and the Kruskal⁃Wallis H test was used to compare the MOIs of multiple independent samples. ResultsAfter 16 weeks of surveillance, 997 mosquito ovitraps were recovered, of which 211 were positive, with the mosquito ovitrap index (MOI) of 21.16% and the Aedes albopictus density index of 1.03 mosquitoes·ovitrap-1. The MOIs were higher in September (24.22%) and October (23.96%), and the MOIs in the west, south and north within the two months were all above 20.00%. From July to October, the MOIs in the east, west, south and north were 20.70%, 22.20%, 25.50% and 16.20%, respectively, and the difference in MOIs among the 4 orientations was not statistically significant (χ2=6.647, P=0.084). Stratified analysis by month showed that in August, the south side of the multi-storey residential areas had the highest MOI (31.30%), the north side had the lowest MOI (1.30%), and there was a statistically significant difference in MOI in the east, west, south and north (χ2=25.986, P<0.001). In October, the MOI in the west was the highest (33.30%) and the MOI in the east was the lowest (6.30%), the difference in MOIs of the 4 orientations was statistically significant (χ2=12.007, P=0.007). The MOIs in the south side of the building in the outskirts of the residential area from the 1st week in July to the 4th week in October was lower (19.20%) than that in the south side of the inner building (31.70%), and the difference in MOI was statistically significant (χ2=5.118, P=0.024). ConclusionThe study of MOI in different orientations in a multi-storey residential area is a preliminary exploration based on field work, and the results show that there is a difference in MOIs in different orientations during the peak breeding period of mosquitoes. Further indicators such as temperature, humidity and wind speed in different orientations can be collected to explore the influencing factors of MOIs.
2.Finite element analysis of various root shield thicknesses in maxillary central incisor socket-shield technique
Guangneng CHEN ; Siyang LUO ; Mei WANG ; Bin YE ; Jiawen CHEN ; Yin LIU ; Yuwen ZUO ; Xianyu HE ; Jiajin SHEN ; Minxian MA
Chinese Journal of Tissue Engineering Research 2025;29(10):2052-2060
BACKGROUND:Socket-shield technique can effectively maintain labial soft and hard tissues,but the incidence of postoperative complications such as exposure and displacement of root shield is relatively high.It is speculated that the root shield may be exposed and displaced due to excessive load after long-term function of dental implants. OBJECTIVE:Through three-dimensional finite element analysis,we aim to study the influence of varying root shield thicknesses on the stress distribution,equivalent stress peaks,and displacement in the root shield,periodontal ligaments,implant,and surrounding alveolar bone under normal occlusal loading.We also attempt to analyze the correlation between the thickness of the root shield and occurrence of mechanical events such as root shield exposure,displacement,and fracture. METHODS:Cone-beam CT data of a patient who met the indication standard of socket-shield technique for maxillary central incisor were retrieved from database.Reverse engineering techniques were used to build models of the maxillary bone and root shield,while forward engineering was used to create models for the implant components based on their parameters.Models depicting various root shield thicknesses(0.5,1.0,1.5,and 2.0 mm)were created using Solidworks 2022 software.ANSYS Workbench 2021 software was then used to simulate and analyze the effects of varying root shield thicknesses on stress distribution,equivalent stress peaks,and displacement of the root shields,periodontal ligaments,implants,and surrounding alveolar bone under normal occlusion. RESULTS AND CONCLUSION:(1)In all root shield models,the stress was concentrated on the palatal cervical side,both sides of the edges and the lower edge of the labial side.As the thickness of the root shield increased,the equivalent stress peak and displacement showed a decreasing trend.The 0.5 mm thickness model produced a stress concentration of 176.20 MPa,which exceeded the yield strength(150 MPa)of tooth tissue.(2)The periodontal ligament stress in each group was concentrated in the neck margin and upper region.With the increase of root shield thickness,the equivalent stress peak and displacement of periodontal ligament showed a decreasing trend.(3)Implant stress in all models was concentrated in the neck of the implant and the joint of the implant-repair abutment,and the labial side was more concentrated than the palatal side.With the increase of root shield thickness,the equivalent stress peak of the implant in the model showed an increasing trend.(4)In each group of models,stress of cortical bone concentrated around the neck of the implant and the periphery of the root shield,and the labial side was more concentrated than the palatal side.With the increase of the thickness of the root shield,the equivalent stress peak around the root shield decreased;the peak value of the equivalent stress of the bone around the neck of the implant showed an increasing trend.In the model,the stress of cancellous bone was mainly concentrated around the neck of the lip of the implant,the top of the thread,the root tip and the lower margin of the root shield,and the labial side was more concentrated than the palatal side.With the increase of the thickness of the root shield,the peak value of the equivalent stress of the bone around the root shield in the model showed a decreasing trend.The minimum principal stress of cortical bone in each group of models was concentrated around the neck of the implant,exhibiting a fan-shaped distribution.As the thickness of the root shield increased,the minimum principal stress of cortical bone showed an increasing trend.(5)These results indicate that different thicknesses of the root shield have different biomechanical effects.The root shield with a thickness of 0.5 mm is easy to fracture.For patients with sufficient bone width,the root shield with a thickness of 2.0 mm is an option to reduce the risk of complications such as root shield exposure,fracture,and displacement.Meanwhile,it should be taken into account to protect the periodontal ligament in the preparation process,and rounding treatments ought to be carried out on both sides and the lower edge of the root shield.
3.Key Points for Quality Management in Phase Ⅰ Clinical Trials of Anti-Tumor Drugs
Li GONG ; Bin LIAO ; Jie SHEN ; Juan ZHAO ; Yi GONG ; Xiaoxiao LU ; Huiyao YANG ; Sha LI ; Yongsheng LI
Cancer Research on Prevention and Treatment 2025;52(5):347-354
Phase Ⅰ clinical trials play a crucial role in the research and development of new drugs, serving as the initial studies to assess their safety, tolerability, effectiveness, and pharmacokinetic properties in humans. These trials involve uncertainties regarding safety and efficacy. Comprehensive management of all aspects of phase Ⅰ clinical trials for anti-tumor drugs is crucial to protect the rights and safety of participants. This article provides an in-depth analysis of the key points and precautions necessary for effective quality control throughout the process. The analysis is informed by guidelines such as the “Good Clinical Practice for Drugs” “Key Points and Judgment Principles for Drug Registration Verification” “Key Points and Judgment Principles for Supervision and Inspection of Drug Clinical Trial Institutions” and the standard operating procedures for quality control of the center. Topics discussed include informed consent, inclusion criteria, experimental drugs, biological samples, adverse events, and serious adverse events. The goal is to standardize quality control in phase Ⅰ clinical trials of anti-tumor drugs, ensure the authenticity and reliability of clinical trial data, and protect the rights and safety of participants.
4.Ultrasound-based radiogenomics: status, applications, and future direction
Si-Rui WANG ; Yu-Ting SHEN ; Bin HUANG ; Hui-Xiong XU
Ultrasonography 2025;44(2):95-111
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.
5.Ultrasound-based radiogenomics: status, applications, and future direction
Si-Rui WANG ; Yu-Ting SHEN ; Bin HUANG ; Hui-Xiong XU
Ultrasonography 2025;44(2):95-111
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.
6.Ultrasound-based radiogenomics: status, applications, and future direction
Si-Rui WANG ; Yu-Ting SHEN ; Bin HUANG ; Hui-Xiong XU
Ultrasonography 2025;44(2):95-111
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.
7.Ultrasound-based radiogenomics: status, applications, and future direction
Si-Rui WANG ; Yu-Ting SHEN ; Bin HUANG ; Hui-Xiong XU
Ultrasonography 2025;44(2):95-111
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.
8.Ultrasound-based radiogenomics: status, applications, and future direction
Si-Rui WANG ; Yu-Ting SHEN ; Bin HUANG ; Hui-Xiong XU
Ultrasonography 2025;44(2):95-111
Radiogenomics, an extension of radiomics, explores the relationship between imaging features and underlying gene expression patterns. This field is instrumental in providing reliable imaging surrogates, thus potentially representing an alternative to genetic testing. The rapidly growing area of radiogenomics that utilizes ultrasound (US) imaging seeks to elucidate the connections between US image characteristics and genomic data. In this review, the authors outline the radiogenomics workflow and summarize the applications of US-based radiogenomics. These include the prediction of gene variations, molecular subtypes, and other biological characteristics, as well as the exploration of the relationships between US phenotypes and cancer gene profiles. Although the field faces various challenges, US-based radiogenomics offers promising prospects and avenues for future research.
9.Disease Burden and Indirect Economic Burden Due to Lung Cancer from 1981 to 2020 in Kunshan, Jiangsu Province, China
Yijun SHEN ; Wenbin HU ; Bin NI
Cancer Research on Prevention and Treatment 2024;51(2):121-126
Objective To identify the disease burden and indirect economic burden caused by lung cancer in Kunshan City, Jiangsu Province, from 1981 to 2020. Methods The incidence and death cases of lung cancer were obtained from cancer registry and death cause monitoring data. The disability adjusted life years (DALY) was used as the evaluation index for burden posed by lung cancer on health, and the indirect economic burden was calculated by a human capital method. Results From 1981 to 2020, a total of 9272 deaths due to lung cancer were reported in Kunshan, of which 7106 were males and 2166 were females. The DALY caused by lung cancer in the whole population were 3.81, 4.14, 4.38, and 9.46 in 1981–1990, 1991–2000, 2001–2010, and 2011–2020, respectively. The indirect economic burden caused by lung cancer was 10.515, 141.657, 813.794, and 6659.149 million yuan. From 2011 to 2020, the ratios of years of life lost due to premature mortality to DALY in males, females, and the general population were 92.42%, 95.15%, and 93.60%, respectively. Conclusion The health burden and indirect economic burden for lung cancer are substantial in the Kunshan City. Moreover, age-specific DALY and indirect economic burden are not exactly symmetrical, suggesting that an effective control strategy to lower cost is urgently needed, especially for individuals aged 40-59.
10.Structural and functional parameters of adult Macaca fascicularis retina
Keren LIAO ; Bin PENG ; Hongmei ZHENG ; Yifan LIU ; Yin SHEN
Chinese Journal of Experimental Ophthalmology 2024;42(1):12-18
Objective:To measure the retinal structural and functional parameters of adult Macaca fascicularis, and explore the similarity of the retinal structural and functional parameters between non-human primates and normal human retinas.Methods:Six eyes of 3 5-year-old adult Macaca fascicularis were examined by in vivo detection including color fundus photography, retinal optical coherence tomography (OCT) and electroretinogram (ERG) to determine the thickness of the inner/outer retina at the fovea and 1 000/2 000 μm away from the nasal, temporal, superior and inferior regions of the fovea, the thickness of the retinal nerve fiber layer (RNFL), the area of optic disc, the area of optic cup, the area ratio of cup to disc and the biological parameters of flash ERG.Differences in the above parameters between left and right eyes were analyzed.The similarity of parameters between Macaca fascicularis and human was compared with reference to published literature.The use and care of animals complied with the Regulation on the Management of Experimental Animals.The study protocol was approved by the Institutional Animal Care and Use Committee of Hubei Topgene Biotechnology (NO.IACUC-2019-012). Results:The foveal thickness, optic disc area, cup-disc area ratio, and average RNFL thickness in normal adult Macaca fascicularis were (252.31±4.79)μm, (1.89±0.05)mm 2, 0.14±0.01, and (103.53±0.58)μm, respectively.The b-wave amplitude of dark-adapted 0.01 ERG was (66.75±7.29)μV.The a- and b-wave amplitudes of dark-adapted 3.0 ERG response were (57.15±15.01) and (122.10±25.51)μV, respectively.The a- and b-wave amplitudes, the amplitude of oscillation potentials, and the latency of dark-adapted 10.0 ERG response were (72.98±20.14)μV, (131.67±13.78)μV, (49.98±10.08)μV, and (30.02±5.76)ms, respectively.The a- and b-wave amplitudes of light-adapted 3.0 ERG were (9.16±2.75) and (40.43±5.57)μV, respectively.The latency and the amplitude of the light-adapted 30 Hz flicker was (26.61±1.19)ms and (24.72±5.10)μV, respectively.There was no significant difference in the parameters between left and right eyes (all at P>0.05). The retinal thickness in central fovea, mean RNFL thickness, waveform and amplitude of ERG of Macaca fascicularis were similar to normal human. Conclusions:The structure and function of the retina of adult Macaca fascicularis are similar to those of normal humans.As a laboratory animal for preclinical drug research, in vivo studies of Macaca fascicularis can refer to normal human retinal parameters.

Result Analysis
Print
Save
E-mail