1.Oral administration of Bifidobacterium breve improves anti-angiogenic drugs-derived oral mucosal wound healing impairment via upregulation of interleukin-10.
Qingxiang LI ; Yuke LI ; Qiao QIAO ; Ning ZHAO ; Yuanning YANG ; Lin WANG ; Yifei WANG ; Chuanbin GUO ; Yuxing GUO
International Journal of Oral Science 2023;15(1):56-56
Recent studies have suggested that long-term application of anti-angiogenic drugs may impair oral mucosal wound healing. This study investigated the effect of sunitinib on oral mucosal healing impairment in mice and the therapeutic potential of Bifidobacterium breve (B. breve). A mouse hard palate mucosal defect model was used to investigate the influence of sunitinib and/or zoledronate on wound healing. The volume and density of the bone under the mucosal defect were assessed by micro-computed tomography (micro-CT). Inflammatory factors were detected by protein microarray analysis and enzyme-linked immunosorbent assay (ELISA). The senescence and biological functions were tested in oral mucosal stem cells (OMSCs) treated with sunitinib. Ligated loop experiments were used to investigate the effect of oral B. breve. Neutralizing antibody for interleukin-10 (IL-10) was used to prove the critical role of IL-10 in the pro-healing process derived from B. breve. Results showed that sunitinib caused oral mucosal wound healing impairment in mice. In vitro, sunitinib induced cellular senescence in OMSCs and affected biological functions such as proliferation, migration, and differentiation. Oral administration of B. breve reduced oral mucosal inflammation and promoted wound healing via intestinal dendritic cells (DCs)-derived IL-10. IL-10 reversed cellular senescence caused by sunitinib in OMSCs, and IL-10 neutralizing antibody blocked the ameliorative effect of B. breve on oral mucosal wound healing under sunitinib treatment conditions. In conclusion, sunitinib induces cellular senescence in OMSCs and causes oral mucosal wound healing impairment and oral administration of B. breve could improve wound healing impairment via intestinal DCs-derived IL-10.
Animals
;
Mice
;
Interleukin-10
;
Bifidobacterium breve
;
Up-Regulation
;
Angiogenesis Inhibitors
;
Sunitinib
;
X-Ray Microtomography
;
Administration, Oral
;
Wound Healing
;
Antibodies, Neutralizing
2.Features of intestinal flora in children with food protein-induced proctocolitis based on high-throughput sequencing.
Shun-Li CHEN ; Zheng-Zhen TANG ; Bo HUANG ; Xing-Yan ZHAO ; Shou-Shan CHEN
Chinese Journal of Contemporary Pediatrics 2022;24(5):536-542
OBJECTIVES:
To study the features of intestinal flora in children with food protein-induced proctocolitis (FPIP) by high-throughput sequencing.
METHODS:
A total of 31 children, aged <6 months, who experienced FPIP after exclusive breastfeeding and attended the outpatient service of the Third Affiliated Hospital of Zunyi Medical University from October 2018 to February 2021 were enrolled as the FPIP group. Thirty-one healthy infants were enrolled as the control group. Fecal samples were collected to extract DNA for PCR amplification. High-throughput sequencing was used to perform a bioinformatics analysis of 16S rDNA V3-V4 fragments in fecal samples.
RESULTS:
The diversity analysis of intestinal flora showed that compared with the control group, the FPIP group had a lower Shannon index for diversity (P>0.05) and a significantly higher Chao index for abundance (P<0.01). At the phylum level, the intestinal flora in both groups were composed of Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes. Compared with the control group, the FPIP group had a significant reduction in the composition ratio of Actinobacteria (P<0.001) and a significant increase in the composition ratio of Proteobacteria (P<0.05). At the genus level, the intestinal flora in the FPIP group were mainly composed of Escherichia, Clostridium, Enterococcus, Klebsiella, and Bifidobacterium, and the intestinal flora in the control group were mainly composed of Bifidobacterium and Streptococcus. Compared with the control group, the FPIP group had a significant reduction in the composition ratio of Bifidobacterium and Ruminococcus (P<0.05) and significant increases in the composition ratios of Clostridium and Shigella (P<0.05).
CONCLUSIONS
Compared with the control group, the FPIP group has a reduction in the diversity of intestinal flora and an increase in their abundance, and there are certain differences in several bacterial genera. These results suggest that changes in the composition of intestinal flora at genus level may play an important role in the development and progression of FPIP.
Bacteria/genetics*
;
Bifidobacterium/genetics*
;
Child
;
Gastrointestinal Microbiome
;
High-Throughput Nucleotide Sequencing/methods*
;
Humans
;
Infant
;
Proctocolitis
;
RNA, Ribosomal, 16S/genetics*
3.Changes of intestinal flora in children with acute lymphoblastic leukemia before and after chemotherapy.
Sen-Min CHEN ; Si-Xi LIU ; Fen CHEN ; Chun-Yan WANG ; Hui-Rong MAI ; Xiu-Li YUAN ; Fei-Qiu WEN
Chinese Journal of Contemporary Pediatrics 2022;24(5):550-560
OBJECTIVES:
To examine the changes of intestinal flora in children newly diagnosed with acute lymphoblastic leukemia (ALL) and the influence of chemotherapy on intestinal flora.
METHODS:
Fecal samples were collected from 40 children newly diagnosed with ALL before chemotherapy and at 2 weeks, 1 month, and 2 months after chemotherapy. Ten healthy children served as the control group. 16S rDNA sequencing and analysis were performed to compare the differences in intestinal flora between the ALL and control groups and children with ALL before and after chemotherapy.
RESULTS:
The ALL group had a significant reduction in the abundance of intestinal flora at 1 and 2 months after chemotherapy, with a significant reduction compared with the control group (P<0.05). Compared with the control group, the ALL group had a significant reduction in the diversity of intestinal flora before and after chemotherapy (P<0.05). At the phylum level, compared with the control group, the ALL group had a significant reduction in the relative abundance of Actinobacteria at 2 weeks, 1 month, and 2 months after chemotherapy (P<0.05) and a significant increase in the relative abundance of Proteobacteria at 1 and 2 months after chemotherapy (P<0.05). At the genus level, compared with the control group, the ALL group had a significant reduction in the relative abundance of Bifidobacterium at 2 weeks, 1 month, and 2 months after chemotherapy (P<0.05); the relative abundance of Klebsiella in the ALL group was significantly higher than that in the control group at 1 and 2 months after chemotherapy and showed a significant increase at 1 month after chemotherapy (P<0.05); the relative abundance of Faecalibacterium in the ALL group was significantly lower than that in the control group before and after chemotherapy and showed a significant reduction at 2 weeks and 1 month after chemotherapy (P<0.05). The relative abundance of Enterococcus increased significantly at 1 and 2 months after chemotherapy in the ALL group (P<0.05), and was significantly higher than that in the control group (P<0.05).
CONCLUSIONS
The diversity of intestinal flora in children with ALL is significantly lower than that in healthy children. Chemotherapy significantly reduces the abundance of intestinal flora and can reduce the abundance of some probiotic bacteria (Bifidobacterium and Faecalibacterium) and increase the abundance of pathogenic bacteria (Klebsiella and Enterococcus) in children with ALL.
Bacteria/genetics*
;
Bifidobacterium
;
Child
;
Feces/microbiology*
;
Gastrointestinal Microbiome
;
Humans
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy*
4.Effect of -induced changes in tumor tissue acoustic properties on efficacy of high-intensity focused ultrasound ablation.
Die XU ; Yong LUO ; Xuan GAO ; Jie XIONG ; Binglei JIANG ; Yaotai WANG ; Yu TANG ; Fujie JIANG ; Lu WANG ; Huanan LI ; Hai QIAO ; Jianzhong ZOU
Journal of Southern Medical University 2019;39(9):1009-1016
OBJECTIVE:
To investigate the effects of on the acoustic characteristics of tumor tissue and how such acoustic changes affect the efficacy of high-intensity focused ultrasound (HIFU) ablation in nude mice.
METHODS:
Forty mice bearing human breast cancer cell (MDA-MB-231) xenograft were randomized into experimental group (=20) and control group (=20) for intravenous injection of suspension (200 μL, 4 × 10 cfu/mL) and PBS (200 μL) for 3 consecutive days, respectively. Before and at 3 and 7 days after the first injection, shear wave elastography was used to evaluate the hardness of the tumor tissue. On day 7 after the first injection, 10 mice from each group were sacrificed and the sound velocity and sound attenuation of the tumor tissues were measured. The changes in the collagen fibers in the tumors were evaluated using Masson staining, and neovascularization in the tumor was assessed with immunohistochemistry for platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31). The remaining 10 tumor-bearing mice in each group were subjected to HIFU ablation, and the ablation efficiency was evaluated by assessing the changes in irradiation gray values, coagulative necrosis volume, energy efficiency factor (EEF) and irradiation area and by pathological examination with HE staining.
RESULTS:
In the experimental group, the collagen fibers in the tumor tissues were strong and densely aligned, and the tumors contained fewer new blood vessels showing strip-or spot-like morphologies. In the control group, the collagen fibers in the tumors were thin and loosely arranged, and the tumors showed abundant elongated or round new blood vessels. colonized in the tumor 7 days after the injection, and the tumor hardness was significantly greater in the experimental group than in the control group (=0.01); the acoustic velocity (=0.001) and the acoustic attenuation (=0.000) of the tumor tissues were also greater in the experimental group. HIFU irradiation resulted in significantly greater changes in the gray scale of tumor (=0.0006) and larger coagulative necrosis volume (=0.0045) in the experimental group than in the control group, and the EEF was significantly smaller in the experimental group (=0.0134).
CONCLUSIONS
can cause changes in collagen fiber content, acoustic velocity and attenuation in the tumor tissue and reduce the EEF of HIFU irradiation, thereby improving the efficacy of HIFU irradiation.
Acoustics
;
Animals
;
Bifidobacterium
;
pathogenicity
;
Breast Neoplasms
;
pathology
;
Collagen
;
Elasticity Imaging Techniques
;
High-Intensity Focused Ultrasound Ablation
;
Humans
;
Mice
;
Mice, Nude
;
Neoplasm Transplantation
;
Random Allocation
5.Effect of probiotic supplementation during pregnancy and infancy in preventing atopic dermatitis in children: a Meta analysis.
Dao-Gen YIN ; Zhen HE ; Xue-Yan DUAN ; Fei-Xiang FAN ; Xiao-Bing LIAO ; Qing-Chuan WANG
Chinese Journal of Contemporary Pediatrics 2019;21(1):82-88
OBJECTIVE:
To systematically review the effect of probiotic supplementation during pregnancy and infancy in preventing atopic dermatitis in children.
METHODS:
RevMan5.3 was used to perform a Meta analysis of randomized controlled trials on the effect of probiotic supplementation during pregnancy and infancy in preventing atopic dermatitis in children published between January 2008 and May 2018 across the world. A subgroup analysis was conducted according to the type of probiotics for intervention, follow-up time, time of probiotic supplementation, and study areas.
RESULTS:
A total of 22 articles were selected, with 3 280 cases in the intervention group and 3 281 cases in the control group. The results of pooled effect size showed that probiotic supplementation during pregnancy and/or infancy significantly reduced the incidence rate of atopic dermatitis (RR=0.81, 95%CI: 0.70-0.93, P<0.05). According to the subgroup analysis, the intervention with Lactobacillus and Bifidobacterium had a significant effect (RR=0.68, 95%CI: 0.52-0.90, P<0.05); probiotic supplementation during both pregnancy and infancy also had a significant effect (RR=0.77, 95%CI: 0.66-0.90, P<0.05); probiotic supplementation during pregnancy and/or infancy had a better effect in preventing atopic dermatitis in children aged ≤2 years than in those aged >2 years (RR=0.74, 95%CI: 0.61-0.90, P<0.05); probiotic supplementation had a significant effect in Australia (RR=0.83, 95%CI: 0.73-0.96, P<0.05) and Europe/the United States (RR=0.74, 95%CI: 0.61-0.91, P<0.05). Heterogeneity was mainly due to follow-up time (I=62.7%) and time of probiotic supplementation (I=53.5%).
CONCLUSIONS
Probiotic supplementation during pregnancy and infancy helps to prevent atopic dermatitis in children, and mixed Lactobacillus-Bifidobacterium intervention has a better effect.
Bifidobacterium
;
Child, Preschool
;
Dermatitis, Atopic
;
Female
;
Humans
;
Infant
;
Lactobacillus
;
Pregnancy
;
Probiotics
6.Bifidobacterium infantis Induces Protective Colonic PD-L1 and Foxp3 Regulatory T Cells in an Acute Murine Experimental Model of Inflammatory Bowel Disease
Linyan ZHOU ; Dongyan LIU ; Ying XIE ; Xinjie YAO ; Yan LI
Gut and Liver 2019;13(4):430-439
BACKGROUND/AIMS: The current study aims to investigate the protective effects of Bifidobacterium infantis on the abnormal immune response to inflammatory bowel disease (IBD) in dextran sodium sulfate (DSS)-induced colitis. METHODS: Eight-week-old BALB/c mice were separated into five groups at random (control, DSS, DSS+B9 [B. infantis 1×10⁹ CFU], DSS+B8 [B. infantis 1×10⁸ CFU], and DSS+B7 [B. infantis 1×10⁷ CFU]). Colitis was induced by 5% DSS ad libitum for 7 days, at which time we assessed weight, the disease activity index (DAI) score, and the histological damage score. The nuclear transcription factor Foxp3 (a marker of Treg cells), cytokines interleukin-10 (IL-10) and transforming growth factor β1 (TGF-β1), and related proteins (programmed cell death ligand 1 [PD-L1] and programmed cell death 1 [PD-1]) were detected by an immunohistochemical method and Western blot. RESULTS: B. infantis increased weight, decreased DAI scores and histological damage scores, increased the protein expression of Foxp3 (p<0.05) and cytokines IL-10 and TGF-β1 in mouse colon tissue (p<0.05), and increased the expression of PD-L1 in the treatment groups relative to that in the DSS group (p<0.05). The effect of B. infantis on Foxp3 and PD-L1 was dose dependent in the treatment groups (p<0.05). PD-L1 was positively correlated with Foxp3, IL-10, and TGF-β1. CONCLUSIONS: In a mouse model of IBD, B. infantis can alleviate intestinal epithelial injury and maintain intestinal immune tolerance and thus may have potential therapeutic value for the treatment of immune damage in IBD.
Animals
;
Bifidobacterium
;
Blotting, Western
;
Cell Death
;
Colitis
;
Colon
;
Cytokines
;
Dextrans
;
Immune Tolerance
;
Inflammatory Bowel Diseases
;
Interleukin-10
;
Methods
;
Mice
;
Models, Theoretical
;
Sodium
;
T-Lymphocytes, Regulatory
;
Transcription Factors
;
Transforming Growth Factors
7.Is stool frequency associated with the richness and community composition of gut microbiota?
Hye Jung KWON ; Jong Hyun LIM ; Dongmin KANG ; Sanghyun LIM ; Seun Ja PARK ; Jae Hyun KIM
Intestinal Research 2019;17(3):419-426
BACKGROUND/AIMS: Recently, a number of studies have reported that the gut microbiota could contribute to human conditions, including obesity, inflammation, cancer development, and behavior. We hypothesized that the composition and distribution of gut microbiota are different according to stool frequency, and attempted to identify the association between gut microbiota and stool frequency. METHODS: We collected fecal samples from healthy individuals divided into 3 groups according to stool frequency: group 1, a small number of defecation (≤2 times/wk); group 2, normal defecation (1 time/day or 1 time/2 day); and group 3, a large number of defecation (≥2–3 times/day). We evaluated the composition and distribution of the gut microbiota in each group via 16S rRNA-based taxonomic profiling of the fecal samples. RESULTS: Fecal samples were collected from a total of 60 individuals (31 men and 29 women, aged 34.1±5.88 years), and each group comprised 20 individuals. The microbial richness of group 1 was significantly higher than that of group 3 and tended to decrease with increasing number of defecation (P<0.05). The biological community composition was fairly different according to the number of defecation, and Bacteroidetes to Firmicutes ratio was higher in group 1 than in the other groups. Moreover, we found specific strains at the family and genus levels in groups 1 and 3. CONCLUSIONS: Bacteroidetes to Firmicutes ratio and the abundance of Bifidobacterium were different according to the stool frequency, and specific bacteria were identified in the subjects with large and small numbers of defecation, respectively. These findings suggest that stool frequency might be associated with the richness and community composition of the gut microbiota.
Bacteria
;
Bacteroidetes
;
Bifidobacterium
;
Biota
;
Defecation
;
Feces
;
Female
;
Firmicutes
;
Gastrointestinal Microbiome
;
Humans
;
Inflammation
;
Male
;
Obesity
8.Effect of Bifidobacterium on the expression of β-defensin-2 in intestinal tissue of neonatal rats with necrotizing enterocolitis.
Wei-Cheng LU ; Xu ZHENG ; Jin-Fu LIU ; Wen-Chuan WU ; Xing-Yue CHEN ; Hai-Bo WEI ; Chun-Lei LI ; Ming-Jing LIN
Chinese Journal of Contemporary Pediatrics 2018;20(3):224-229
OBJECTIVETo study the effect of Bifidobacterium on the expression of β-defensin-2 (BD-2) in intestinal tissue of neonatal rats with necrotizing enterocolitis (NEC).
METHODSA total of 40 rats were randomly divided into four groups: normal control, Bifidobacterium control, NEC model, and Bifidobacterium treatment, with 10 rats in each group. A rat model of NEC was induced by hypoxia, cold stimulation, and artificial feeding. The rats in the Bifidobacterium control and Bifidobacterium treatment groups were given Bifidobacterium via the gastric tube after cold stimulation once a day for three consecutive days. The morphological changes of the terminal ileum were observed under a light microscope and the intestinal injury score was determined. Immunohistochemistry and qRT-PCR were used to measure the protein and mRNA expression of BD-2 in the ileal mucosal tissue.
RESULTSThe NEC model group had a significantly higher intestinal injury score than the normal control, Bifidobacterium control, and Bifidobacterium treatment groups (P<0.05). The Bifidobacterium treatment group had a significantly higher intestinal injury score than the normal control and Bifidobacterium control groups (P<0.05). The mRNA and protein expression of BD-2 in the normal control group was significantly lower than in the Bifidobacterium control, NEC model, and Bifidobacterium treatment groups (P<0.05). The Bifidobacterium control group had significantly higher mRNA and protein expression of BD-2 than the NEC model and Bifidobacterium treatment groups (P<0.05). The Bifidobacterium treatment group had significantly higher mRNA and protein expression of BD-2 than the NEC model group (P<0.05).
CONCLUSIONSBifidobacterium can induce the expression of BD-2 in intestinal tissue of rats and reduce inflammatory response by increasing the expression of BD-2. This provides a protective effect on neonatal rats with NEC.
Animals ; Bifidobacterium ; Disease Models, Animal ; Enterocolitis, Necrotizing ; therapy ; Humans ; Infant, Newborn ; Intestinal Mucosa ; metabolism ; NF-kappa B ; physiology ; Rats ; Rats, Sprague-Dawley ; Signal Transduction ; physiology ; beta-Defensins ; analysis ; genetics ; physiology
9.Development and diversity of lactic acid producing bacteria and bifidobacteria in healthy full term Indian infants from Himachal Pradesh.
Sampan ATTRI ; Rishi MAHAJAN ; Gunjan GOEL
Intestinal Research 2018;16(4):529-536
BACKGROUND/AIMS: The initial microbial colonization is a crucial step for the healthy development of an infant. Previous studies from India reported the dominance of target microbial species among Indian infants without any analysis on the diversity of target groups. This is the first study from India with an objective to investigate the establishment and diversity of lactic acid producing bacteria (LAB) and bifidobacteria in vaginally delivered, full term, breastfed infants for the first 4 months after birth. METHODS: Present study used polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) based sequence analysis of LAB and bifidobacteria in healthy infants. The results were used to compare the development and early colonization by LAB and bifidobacteria using diversity indices during the initial months of development of gut microbiota in infants. RESULTS: During the first 4 months, the Shannon diversity index (H) of LAB increased from 1.16 to 1.318 and for bifidobacteria the H increased from 0.975 to 1.293 (P < 0.05). Higher Sorenson’s pair wise similarity coefficient was observed for LAB and bifidobacteria during 2nd and the 3rd month. The species of the genera Enterococcus, Streptococcus, and Lactobacillus were dominant among the LAB group whereas Bifidobacterium breve was dominant species among Bifidobacterium group. CONCLUSIONS: Our results indicate that in breast fed infants, the microbial diversity of LAB and bifidobacteria increased during the period of study.
Bacteria*
;
Bifidobacterium
;
Biodiversity
;
Breast
;
Colon
;
Electrophoresis
;
Enterococcus
;
Gastrointestinal Microbiome
;
Humans
;
India
;
Infant*
;
Lactic Acid*
;
Lactobacillus
;
Parturition
;
Sequence Analysis
;
Streptococcus
10.Utility of Conventional Culture and MALDI-TOF MS for Identification of Microbial Communities in Bronchoalveolar Lavage Fluid in Comparison with the GS Junior Next Generation Sequencing System.
Ji Yeon SUNG ; Younjee HWANG ; Mi Hwa SHIN ; Moo Suk PARK ; Sang Hoon LEE ; Dongeun YONG ; Kyungwon LEE
Annals of Laboratory Medicine 2018;38(2):110-118
BACKGROUND: Diverse microbiota exist in the lower respiratory tract. Although next generation sequencing (NGS) is the most widely used microbiome analysis technique, it is difficult to implement NGS in clinical microbiology laboratories. Therefore, we evaluated the performance of conventional culture methods together with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in identifying microbiota in bronchoalveolar lavage (BAL) fluid. METHODS: BAL fluid samples (n=27) were obtained from patients undergoing diagnostic bronchoscopy for lung mass evaluation. Bacterial and fungal culture was performed with conventional media used in clinical microbiology laboratories. On an average, 20 isolated colonies were picked from each agar plate and identified by MALDI-TOF MS. Microbiome analysis using 16S rRNA NGS was conducted for comparison. RESULTS: Streptococcus spp. and Neisseria spp. were most frequently cultured from the BAL fluid samples. In two samples, Enterobacteriaceae grew predominantly on MacConkey agar. Actinomyces and Veillonella spp. were commonly identified anaerobes; gut bacteria, such as Lactobacillus, Bifidobacterium, and Clostridium, and fungi were also isolated. NGS revealed more diverse bacterial communities than culture, and Prevotella spp. were mainly identified solely by NGS. Some bacteria, such as Staphylococcus spp., Clostridium spp., and Bifidobacterium spp., were identified solely by culture, indicating that culture may be more sensitive for detecting certain bacteria. CONCLUSIONS: Culture and NGS of BAL fluid samples revealed common bacteria with some different microbial communities. Despite some limitations, culture combined with MALDI-TOF MS might play a complementary role in microbiome analysis using 16S rRNA NGS.
Actinomyces
;
Agar
;
Bacteria
;
Bifidobacterium
;
Bronchoalveolar Lavage Fluid*
;
Bronchoalveolar Lavage*
;
Bronchoscopy
;
Clostridium
;
Enterobacteriaceae
;
Fungi
;
Humans
;
Lactobacillus
;
Lung
;
Mass Spectrometry
;
Microbiota
;
Neisseria
;
Prevotella
;
Respiratory System
;
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
;
Staphylococcus
;
Streptococcus
;
Veillonella

Result Analysis
Print
Save
E-mail