1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Effects of Cldn14 gene knockout on the formation of calcium oxalate stones in rats and its mechanism
Peiyue LUO ; Liying ZHENG ; Tao CHEN ; Jun ZOU ; Wei LI ; Qi CHEN ; Le CHENG ; Lifeng GAN ; Fangtao ZHANG ; Biao QIAN
Journal of Modern Urology 2025;30(2):168-173
Objective: To explore the effects of Cldn14 gene knockout on renal metabolism and stone formation in rats,so as to provide reference for research in the field of urinary calium metabolism and stone formation. Methods: Cldn14 gene knockout homozygous rats and wild-type rats of the same age were randomly divided into 4 groups:wild-type control (WC) group,wild-type ethylene glycol (WE) group,gene knockout control (KC) group and gene knockout ethylene glycol (KE) group,with 10 rats in each group.The WE and KE groups were induced with ethylene glycol + ammonium chloride to form kidney stones,while the WC and KC groups received normal saline gavage.After 4 weeks of standard maintenance feeding,the urine samples were collected to detect the venous blood.The kidneys were collected for HE,Pizzolatto's staining and transmission electron microscopy.The protein in renal tissues was extracted to detect the expressions of Claudin16 and Claudin19. Results: Crystal deposition was observed in the renal tubular lumen of the WE and the KE groups,and more crystals were detected in the KE group.The WE group had a large number of intracytoplasmic black crystalline inclusions observed in renal tubular epithelial cells under transmission electron microscope,followed by the KE and KC groups.Compared with WC and WE groups,KC and KE groups had significantly decreased serum calcium and magnesium levels but significantly increased urinary calcium level.In addition,the urinary calcium level was higher in the WE group than in the WC group and higher in the KE group than in the KC group.The KE group had lower level of Claudin16,but there was no significant difference in the level of Claudin19 among the 4 groups(P>0.05). Conclusion: Knockout of Cldn14 gene alone cannot effectively reduce urinary calcium excretion or reduce the risk of stone formation in rats,which may be related to the decrease of Claudin16 level.
3.Research progress on the pathogenesis and treatment of gallbladder cancer
Jian-Qiang CAO ; Sheng-Biao YANG ; Xi-Qiang WANG ; Hui-Jie GAO ; Zhao-Bin HE ; Cheng PENG ; Jun NIU
Chinese Journal of Current Advances in General Surgery 2024;27(2):85-91
Gallbladder carcinoma,a relatively rare malignancy within the biliary tract,presents a grave prognosis primarily due to asymptomatic early stages leading to advanced stage diagnosis and the absence of efficacious treatment options.Research has identified chronic inflammation,predom-inantly caused by gallstones,as a critical etiological factor.While surgical intervention offers potential curative outcomes in early stages,the majority of cases are identified too late for optimal surgical outcomes.Chemotherapy and targeted therapy,despite offering new therapeutic avenues,have not significantly improved overall survival rates.Thus,understanding the pathogenesis of gallbladder cancer,especially its association with key genetic and molecular pathways,is imperative for devising novel therapeutic strategies.This review delineates the epidemiology,pathogenesis,current treat-ment modalities,and research advancements in gallbladder cancer,aiming to provide innovative in-sights for clinical management and guide future research endeavors.
4.Expert consensus on the diagnosis and treatment of osteoporotic proximal humeral fracture with integrated traditional Chinese and Western medicine (version 2024)
Xiao CHEN ; Hao ZHANG ; Man WANG ; Guangchao WANG ; Jin CUI ; Wencai ZHANG ; Fengjin ZHOU ; Qiang YANG ; Guohui LIU ; Zhongmin SHI ; Lili YANG ; Zhiwei WANG ; Guixin SUN ; Biao CHENG ; Ming CAI ; Haodong LIN ; Hongxing SHEN ; Hao SHEN ; Yunfei ZHANG ; Fuxin WEI ; Feng NIU ; Chao FANG ; Huiwen CHEN ; Shaojun SONG ; Yong WANG ; Jun LIN ; Yuhai MA ; Wei CHEN ; Nan CHEN ; Zhiyong HOU ; Xin WANG ; Aiyuan WANG ; Zhen GENG ; Kainan LI ; Dongliang WANG ; Fanfu FANG ; Jiacan SU
Chinese Journal of Trauma 2024;40(3):193-205
Osteoporotic proximal humeral fracture (OPHF) is one of the common osteoporotic fractures in the aged, with an incidence only lower than vertebral compression fracture, hip fracture, and distal radius fracture. OPHF, secondary to osteoporosis and characterized by poor bone quality, comminuted fracture pattern, slow healing, and severely impaired shoulder joint function, poses a big challenge to the current clinical diagnosis and treatment. In the field of diagnosis, treatment, and rehabilitation of OPHF, traditional Chinese and Western medicine have accumulated rich experience and evidence from evidence-based medicine and achieved favorable outcomes. However, there is still a lack of guidance from a relevant consensus as to how to integrate the advantages of the two medical systems and achieve the integrated diagnosis and treatment. To promote the diagnosis and treatment of OPHF with integrated traditional Chinese and Western medicine, relevant experts from Orthopedic Expert Committee of Geriatric Branch of Chinese Association of Gerontology and Geriatrics, Youth Osteoporosis Group of Orthopedic Branch of Chinese Medical Association, Osteoporosis Group of Orthopedic Surgeon Branch of Chinese Medical Doctor Association, and Osteoporosis Committee of Shanghai Association of Integrated Traditional Chinese and Western Medicine have been organized to formulate Expert consensus on the diagnosis and treatment of osteoporotic proximal humeral fracture with integrated traditional Chinese and Western medicine ( version 2024) by searching related literatures and based on the evidences from evidence-based medicine. This consensus consists of 13 recommendations about the diagnosis, treatment and rehabilitation of OPHF with integrated traditional Chinese medicine and Western medicine, aimed at standardizing, systematizing, and personalizing the diagnosis and treatment of OPHF with integrated traditional Chinse and Western medicine to improve the patients ′ function.
5.Application Study of Enzyme Inhibitors and Their Conformational Optimization in The Treatment of Alzheimer’s Disease
Chao-Yang CHU ; Biao XIAO ; Jiang-Hui SHAN ; Shi-Yu CHEN ; Chu-Xia ZHANG ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Zhi-Cheng LIN ; Kai XIE ; Shu-Jun XU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2024;51(7):1510-1529
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment, and there is a lack of effective drugs to treat AD clinically. Existing medications for the treatment of AD, such as Tacrine, Donepezil, Rivastigmine, and Aducanumab, only serve to delay symptoms and but not cure disease. To add insult to injury, these medications are associated with very serious adverse effects. Therefore, it is urgent to explore effective therapeutic drugs for AD. Recently, studies have shown that a variety of enzyme inhibitors, such as cholinesterase inhibitors, monoamine oxidase (MAO)inhibitors, secretase inhibitors, can ameliorate cholinergic system dysfunction, Aβ production and deposition, Tau protein hyperphosphorylation, oxidative stress damage, and the decline of synaptic plasticity, thereby improving AD symptoms and cognitive function. Some plant extracts from natural sources, such as Umbelliferone, Aaptamine, Medha Plus, have the ability to inhibit cholinesterase activity and act to improve learning and cognition. Isochromanone derivatives incorporating the donepezil pharmacophore bind to the catalytic active site (CAS) and peripheral anionic site (PAS) sites of acetylcholinesterase (AChE), which can inhibit AChE activity and ameliorate cholinergic system disorders. A compound called Rosmarinic acid which is found in the Lamiaceae can inhibit monoamine oxidase, increase monoamine levels in the brain, and reduce Aβ deposition. Compounds obtained by hybridization of coumarin derivatives and hydroxypyridinones can inhibit MAO-B activity and attenuate oxidative stress damage. Quinoline derivatives which inhibit the activation of AChE and MAO-B can reduce Aβ burden and promote learning and memory of mice. The compound derived from the combination of propargyl and tacrine retains the inhibitory capacity of tacrine towards cholinesterase, and also inhibits the activity of MAO by binding to the FAD cofactor of monoamine oxidase. A series of hybrids, obtained by an amide linker of chromone in combine with the benzylpiperidine moieties of donepezil, have a favorable safety profile of both cholinesterase and monoamine oxidase inhibitory activity. Single domain antibodies (such as AAV-VHH) targeted the inhibition of BACE1 can reduce Aβ production and deposition as well as the levels of inflammatory cells, which ultimately improve synaptic plasticity. 3-O-trans-p-coumaroyl maslinic acid from the extract of Ligustrum lucidum can specifically inhibit the activity of γ-secretase, thereby rescuing the long-term potentiation and enhancing synaptic plasticity in APP/PS1 mice. Inhibiting γ-secretase activity which leads to the decline of inflammatory factors (such as IFN-γ, IL-8) not only directly improves the pathology of AD, but also reduces Aβ production. Melatonin reduces the transcriptional expression of GSK-3β mRNA, thereby decreasing the levels of GSK-3β and reducing the phosphorylation induced by GSK-3β. Hydrogen sulfide can inhibitGSK-3β activity via sulfhydration of the Cys218 site of GSK-3β, resulting in the suppression of Tau protein hyperphosphorylation, which ameliorate the motor deficits and cognitive impairment in mice with AD. This article reviews enzyme inhibitors and conformational optimization of enzyme inhibitors targeting the regulation of cholinesterase, monoamine oxidase, secretase, and GSK-3β. We are hoping to provide a comprehensive overview of drug development in the enzyme inhibitors, which may be useful in treating AD.
6.The Effect and Mechanism of Mitophagy on Insulin Resistance
Yu-Hua CHEN ; Biao ZHENG ; Di CHENG ; Yu-Lin HE ; Zhong-Cheng MO
Progress in Biochemistry and Biophysics 2024;51(4):772-784
Mitophagy, a highly precise form of autophagy, plays a pivotal role in maintaining cellular homeostasis by selectively targeting and eliminating damaged mitochondria through a process known as mitophagy. Within this tightly regulated mechanism, dysfunctional mitochondria are specifically delivered to lysosomes for degradation. Disruptions in mitophagy have been implicated in a diverse range of pathological conditions, spanning diseases of the nervous system, cardiovascular system, cancer, aging, and metabolic syndrome. The elucidation of mitophagy’s impact on cardiovascular disorders, liver diseases, metabolic syndromes, immune dysfunctions, inflammatory conditions, and cancer has significantly advanced our understanding of the complex pathogenesis underlying these conditions. These studies have shed light on the intricate connections between dysfunctional mitophagy and disease progression. Among the disorders associated with mitochondrial dysfunction, insulin resistance (IR) stands out as a prominent condition linked to metabolic disorders. IR is characterized by a diminished response to normal levels of insulin, necessitating higher insulin levels to trigger a typical physiological reaction. Hyperinsulinemia and metabolic disturbances often coexist with IR, primarily due to defects in insulin signal transduction. Oxidative stress, stemming from mitochondrial dysfunction, exerts dual effects in the context of IR. Initially, it disrupts insulin signaling pathways and subtly contributes to the development of IR. Additionally, by inducing mitochondrial damage and autophagy, oxidative stress indirectly impedes insulin signaling pathways. Consequently, mitophagy acts as a protective mechanism, encapsulating damaged or dysfunctional mitochondria through the autophagy-lysosome pathway. This efficient process eliminates excessive oxidative stress reactive. The intricate interplay between mitochondrial function, oxidative stress, mitophagy, and IR represents a captivating field of investigation in the realm of metabolic disorders. By unraveling the underlying complexities and comprehending the intricate relationships between these intertwined processes, researchers strive toward uncovering novel therapeutic strategies. With a particular focus on mitochondrial quality control and the maintenance of redox homeostasis, these interventions hold tremendous potential in mitigating IR and enhancing overall metabolic health. Emerging evidence from a myriad of studies has shed light on the active involvement of mitophagy in the pathogenesis of metabolic disorders. Notably, interventions such as exercise, drug therapies, and natural products have been documented to induce mitophagy, thereby exerting beneficial effects on metabolic health through the activation of diverse signaling pathways. Several pivotal signaling molecules, including AMPK, PINK1/Parkin, BNIP3/Nix, and FUNDC1, have been identified as key regulators of mitophagy and have been implicated in the favorable outcomes observed in metabolic disorders. Of particular interest is the unique role of PINK1/Parkin in mitophagy compared to other proteins involved in this process. PINK1/Parkin exerts influence on mitophagy through the ubiquitination of outer mitochondrial membrane proteins. Conversely, BNIP3/Nix and FUNDC1 modulate mitophagy through their interaction with LC3, while also displaying certain interrelationships with each other. In this comprehensive review, our objective is to investigate the intricate interplay between mitophagy and IR, elucidating the relevant signaling pathways and exploring the treatment strategies that have garnered attention in recent years. By assimilating and integrating these findings, we aim to establish a comprehensive understanding of the multifaceted roles and intricate mechanisms by which mitophagy influences IR. This endeavor, in turn, seeks to provide novel insights and serve as a catalyst for further research in the pursuit of innovative treatments targeting IR.
7.Genetic characterization of varicella-zoster virus in Jilin province from 2010 to 2023
Xiang LI ; Leilei WEI ; Biao HUANG ; Tao CHENG ; Yuanchun SHAN ; Guixiang QIN ; Hongyan SUN ; Shangwei JI ; Xin TIAN ; Simei FU ; Shuang WANG
Chinese Journal of Experimental and Clinical Virology 2024;38(5):521-526
Objective:This study aimed to analyze the genomic characteristics of Varicella-Zoster Virus (VZV) strains circulating in Jilin province from 2010 to 2023.Methods:Vesicle fluid from 78 sporadic cases with VZV infection were collected in Jilin province from 2010 to 2023, after detecting by Real-time PCR, 26 specimens (CT<25) were detected by PCR. Open reading frame 22(ORF22), ORF38 and ORF62 were amplified and analyzed. Genotyping was confirmed by SNPs ORF22 (37902, 38019, 38055, 38081 and 38177) and ORF38 (69424). Vaccine strains were indentified from wild-type strains according to ORF38 (69349) and ORF62 (106262, 107252, and 108111). Sequences were analyzed by homologous comparison and phylogenetic analysis.Results:The comparison with Dumas sequence revealed that SNPs (37902, 38055, 38081 and 38177) in ORF22 and ORF38 (69424) have mutations similar to the pOka strain, which belong to clade 2. Compared to the Dumas and Baike strains, all 26 samples were wild-type strains. JL2016-4 strain changes from threonine to asparaginyl at position 38059, JL2021-4 strain changes from arginine to proline at position 37933, from aspartic acid to tyrosine at position 37935, and from aspartic acid at base 38031 to tyrosine. JL2023-1 strain changes from arginine to leucine at position 37933.Conclusions:VZV has been prevalent for 14 years in Jilin province. The main epidemic strains belong to the clade 2. We should strengthen the monitoring of VZV outbreaks and raise the coverage rate of VZV vaccination.
8.Introduction of WEN Jian-Min's Minimally-Invasive Diagnosis and Treatment System for Hallux Valgus and Its Application
Guan-Nan WEN ; Ting CHENG ; Ke-Wei JIANG ; Yi-Biao DOU ; Xiang-Yu XI ; Zhi-Qiang BAI ; Jian-Min WEN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(10):2568-2575
Hallux valgus is a common disorder of the forefeet,and its diagnosis and treatment have always drawn the attention of the practitioners.This article introduced the minimally-invasive diagnosis and treatment system for hallux valgus of integrated traditional Chinese and western medicine,which was established by Professor WEN Jian-Min after more than 40 years of in-depth clinical practice and research based on the theory of yin-yang balance and theory of tendons and bones in traditional Chinese medicine(TCM)and through the combination of modern surgical experience.The minimally-invasive diagnosis and treatment system for hallux valgus embodies the principles of balancing yin and yang,laying equal stress on tendons and bones,unifying the fixation and functional exercises,and treating the fractures and the whole body simultaneously,and includes the key technologies such as minimally-invasive osteotomy for the first metatarsal bone,curtain-wrapped external fixation,perioperative Chinese medicine therapy based on syndrome differentiation,and rehabilitation and nursing of TCM.The system will provide a systematic guide for the standardized minimally-invasive treatment of hallux valgus,and will supply an important approach to the treatment of other orthopedic diseases with integrated traditional Chinese and western medicine.The minimally-invasive diagnosis and treatment system for hallux valgus reflects the scientific research achievements and clinical experience of Professor WEN Jian-Min,which exerts high significance of reference and application value.
9.MiR-194-3p Regulation of Simulated Microgravity Induced-Dysfunction of Osteoblasts:An Experimental Study
Jindong XUE ; Luchang CHENG ; Min WANG ; Caimei TAN ; Qiqi DENG ; Haimei ZHU ; Yong GUO ; Biao HAN
Journal of Medical Biomechanics 2024;39(4):623-630
Objective To investigate the role of miR-194-3p in regulating functional changes in osteoblasts in a simulated microgravity environment and to provide a theoretical foundation for understanding the mechanical response mechanisms of osteoblasts in extreme mechanical environments.Methods The effects of microgravity on osteoblasts were simulated by using a rotary cell culture system.MC3T3-E1 osteoblasts were transfected with an miR-194-3p inhibitor and changes in proliferation,differentiation,apoptosis,and mineralization were assessed using MTT assay,RT-PCR,Western blot,double fluorescence staining,and alizarin red staining.Results Elevated expression of miR-194-3p under simulated microgravity conditions led to the suppression of osteoblast proliferation,differentiation,and mineralization to a certain extent,while promoting osteoblast apoptosis.However,transfection with the miR-194-3p inhibitor significantly downregulated miR-194-3p expression and partially reversed the reduced osteoblast proliferation,decreased expression of osteogenic differentiation markers such as ALP,OCN,and COL-I genes and proteins,decreased bone mineralization nodules,and increased osteoblast apoptosis induced by microgravity exposure.These findings indicated that miR-194-3p effectively ameliorates abnormal osteoblast function under microgravity conditions.Conclusions MiR-194-3p acts as a negative regulatory factor in the mechanical responses of osteoblasts under simulated microgravity.
10.A multicenter study of neonatal stroke in Shenzhen,China
Li-Xiu SHI ; Jin-Xing FENG ; Yan-Fang WEI ; Xin-Ru LU ; Yu-Xi ZHANG ; Lin-Ying YANG ; Sheng-Nan HE ; Pei-Juan CHEN ; Jing HAN ; Cheng CHEN ; Hui-Ying TU ; Zhang-Bin YU ; Jin-Jie HUANG ; Shu-Juan ZENG ; Wan-Ling CHEN ; Ying LIU ; Yan-Ping GUO ; Jiao-Yu MAO ; Xiao-Dong LI ; Qian-Shen ZHANG ; Zhi-Li XIE ; Mei-Ying HUANG ; Kun-Shan YAN ; Er-Ya YING ; Jun CHEN ; Yan-Rong WANG ; Ya-Ping LIU ; Bo SONG ; Hua-Yan LIU ; Xiao-Dong XIAO ; Hong TANG ; Yu-Na WANG ; Yin-Sha CAI ; Qi LONG ; Han-Qiang XU ; Hui-Zhan WANG ; Qian SUN ; Fang HAN ; Rui-Biao ZHANG ; Chuan-Zhong YANG ; Lei DOU ; Hui-Ju SHI ; Rui WANG ; Ping JIANG ; Shenzhen Neonatal Data Network
Chinese Journal of Contemporary Pediatrics 2024;26(5):450-455
Objective To investigate the incidence rate,clinical characteristics,and prognosis of neonatal stroke in Shenzhen,China.Methods Led by Shenzhen Children's Hospital,the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022.The incidence,clinical characteristics,treatment,and prognosis of neonatal stroke in Shenzhen were analyzed.Results The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137,1/6 060,and 1/7 704,respectively.Ischemic stroke accounted for 75%(27/36);boys accounted for 64%(23/36).Among the 36 neonates,31(86%)had disease onset within 3 days after birth,and 19(53%)had convulsion as the initial presentation.Cerebral MRI showed that 22 neonates(61%)had left cerebral infarction and 13(36%)had basal ganglia infarction.Magnetic resonance angiography was performed for 12 neonates,among whom 9(75%)had involvement of the middle cerebral artery.Electroencephalography was performed for 29 neonates,with sharp waves in 21 neonates(72%)and seizures in 10 neonates(34%).Symptomatic/supportive treatment varied across different hospitals.Neonatal Behavioral Neurological Assessment was performed for 12 neonates(33%,12/36),with a mean score of(32±4)points.The prognosis of 27 neonates was followed up to around 12 months of age,with 44%(12/27)of the neonates having a good prognosis.Conclusions Ischemic stroke is the main type of neonatal stroke,often with convulsions as the initial presentation,involvement of the middle cerebral artery,sharp waves on electroencephalography,and a relatively low neurodevelopment score.Symptomatic/supportive treatment is the main treatment method,and some neonates tend to have a poor prognosis.

Result Analysis
Print
Save
E-mail