2.Participation of the inositol 1,4,5-trisphosphate-gated calcium channel in the zona pellucida- and progesterone-induced acrosome reaction and calcium influx in human spermatozoa.
Ying-Ya LI ; Yan-Ping JIA ; Li-Yan DUAN ; Kun-Ming LI
Asian Journal of Andrology 2020;22(2):192-199
The acrosome reaction is a prerequisite for fertilization, and its signaling pathway has been investigated for decades. Regardless of the type of inducers present, the acrosome reaction is ultimately mediated by the elevation of cytosolic calcium. Inositol 1,4,5-trisphosphate-gated calcium channels are important components of the acrosome reaction signaling pathway and have been confirmed by several researchers. In this study, we used a novel permeabilization tool BioPORTER® and first demonstrated its effectiveness in spermatozoa. The inositol 1,4,5-trisphosphate type-1 receptor antibody was introduced into spermatozoa by BioPORTER® and significantly reduced the calcium influx and acrosome reaction induced by progesterone, solubilized zona pellucida, and the calcium ionophore A23187. This finding indicates that the inositol 1,4,5-trisphosphate type-1 receptor antibody is a valid inositol 1,4,5-trisphosphate receptor inhibitor and provides evidence of inositol 1,4,5-trisphosphate-gated calcium channel involvement in the acrosome reaction in human spermatozoa. Moreover, we demonstrated that the transfer of 1,4,5-trisphosphate into spermatozoa induced acrosome reactions, which provides more reliable evidence for this process. In addition, by treating the spermatozoa with inositol 1,4,5-trisphosphate/BioPORTER® in the presence or absence of calcium in the culture medium, we showed that the opening of inositol 1,4,5-trisphosphate-gated calcium channels led to extracellular calcium influx. This particular extracellular calcium influx may be the major process of the final step of the acrosome reaction signaling pathway.
Acrosome Reaction/physiology*
;
Calcimycin/pharmacology*
;
Calcium/pharmacology*
;
Calcium Ionophores/pharmacology*
;
Drug Delivery Systems
;
Humans
;
Inositol 1,4,5-Trisphosphate Receptors/metabolism*
;
Male
;
Progesterone/pharmacology*
;
Spermatozoa/metabolism*
;
Zona Pellucida/metabolism*
3.Protein kinase A inhibition induces EPAC-dependent acrosomal exocytosis in human sperm.
Diana ITZHAKOV ; Yeshayahu NITZAN ; Haim BREITBART
Asian Journal of Andrology 2019;21(4):337-344
To interact with the egg, the spermatozoon must undergo several biochemical and motility modifications in the female reproductive tract, collectively called capacitation. Only capacitated sperm can undergo acrosomal exocytosis, near or on the egg, a process that allows the sperm to penetrate and fertilize the egg. In the present study, we investigated the involvement of cyclic adenosine monophosphate (cAMP)-dependent processes on acrosomal exocytosis. Inhibition of protein kinase A (PKA) at the end of capacitation induced acrosomal exocytosis. This process is cAMP-dependent; however, the addition of relatively high concentration of the membrane-permeable 8-bromo-cAMP (8Br-cAMP, 0.1 mmol l-1) analog induced significant inhibition of the acrosomal exocytosis. The induction of acrosomal exocytosis by PKA inhibition was significantly inhibited by an exchange protein directly activated by cAMP (EPAC) ESI09 inhibitor. The EPAC selective substrate activated AE at relatively low concentrations (0.02-0.1 μmol l-1), whereas higher concentrations (>5 μmol l-1) were inhibitory to the AE induced by PKA inhibition. Inhibition of PKA revealed about 50% increase in intracellular cAMP levels, conditions under which EPAC can be activated to induce the AE. Induction of AE by activating the actin severing-protein, gelsolin, which causes F-actin dispersion, was inhibited by the EPAC inhibitor. The AE induced by PKA inhibition was mediated by phospholipase C activity but not by the Ca2+-channel, CatSper. Thus, inhibition of PKA at the end of the capacitation process induced EPAC/phospholipase C-dependent acrosomal exocytosis. EPAC mediates F-actin depolymerization and/or activation of effectors downstream to F-actin breakdown that lead to acrosomal exocytosis.
8-Bromo Cyclic Adenosine Monophosphate/pharmacology*
;
Acrosome/metabolism*
;
Acrosome Reaction/drug effects*
;
Calcimycin/pharmacology*
;
Cyclic AMP/metabolism*
;
Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors*
;
Exocytosis/drug effects*
;
Guanine Nucleotide Exchange Factors/metabolism*
;
Humans
;
Male
;
Protein Kinase Inhibitors/pharmacology*
;
Signal Transduction/drug effects*
;
Spermatozoa/metabolism*
;
Thapsigargin/pharmacology*
4.Sinensetin Inhibits Interleukin-6 in Human Mast Cell - 1 Via Signal Transducers and Activators of the Transcription 3 (STAT3) and Nuclear Factor Kappa B (NF-κB) Pathways.
Hee Sung CHAE ; Young Mi KIM ; Young Won CHIN
Natural Product Sciences 2017;23(1):1-4
Sinensetin, a pentamethoxyflavone, is known to exert various pharmacological activities including anti-angiogenesis, anti-diabetic and anti-inflammatory activities. However, its effects on the human mast cell - 1 (HMC-1) mediated inflammatory mechanism remain unknown. To explore the mediator and cellular inflammatory response of sinensetin, we examined its influence on phorbol 12-myristate 13-acetate (PMA) plus A23187 induced inflammatory mediator production in a human mast cell line. In this study, interleukin (IL)-6 production was measured using the enzyme-linked immunosorbent assay and reverse transcription polymerase chain reaction. Sinensetin inhibited PMA plus A23187 induced IL-6 production in a dose-dependent manner as well as IL-4, IL-5 and IL-8 mRNA expression. Furthermore, sinensetin inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation, suggesting that sinensetin inhibits the production of inflammatory mediators by blocking STAT3 phosphorylation. Moreover, sinensetin was found to inhibit nuclear factor kappa B activation. These findings suggest that sinensetin may be involved in the regulation of mast cell-mediated inflammatory responses.
Calcimycin
;
Enzyme-Linked Immunosorbent Assay
;
Humans*
;
Interleukin-4
;
Interleukin-5
;
Interleukin-6*
;
Interleukin-8
;
Interleukins
;
Mast Cells*
;
NF-kappa B*
;
Phosphorylation
;
Polymerase Chain Reaction
;
Reverse Transcription
;
RNA, Messenger
;
STAT3 Transcription Factor
;
Transducers*
5.Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan.
Dang Van CUONG ; Hyoung Kyu KIM ; Jubert MARQUEZ ; Nari KIM ; Kyung Soo KO ; Byoung Doo RHEE ; Jin HAN
The Korean Journal of Physiology and Pharmacology 2016;20(2):213-220
Mast cells are primary mediators of allergic inflammation. Beta-1,3-glucan (BG) protects against infection and shock by activating immune cells. Activation of the BG receptor induces an increase in intracellular Ca2+, which may induce exocytosis. However, little is known about the precise mechanisms underlying BG activation of immune cells and the possible role of mitochondria in this process. The present study examined whether BG induced mast cell degranulation, and evaluated the role of calcium transients during mast cell activation. Our investigation focused on the role of the mitochondrial calcium uniporter (MCU) in BG-induced degranulation. Black mouse (C57) bone marrow-derived mast cells were stimulated with 0.5 microg/ml BG, 100 microg/ml peptidoglycan (PGN), or 10 microM A23187 (calcium ionophore), and dynamic changes in cytosolic and mitochondrial calcium and membrane potential were monitored. BG-induced mast cell degranulation occurred in a time-dependent manner, and was significantly reduced under calcium-free conditions. Ruthenium red, a mitochondrial Ca2+ uniporter blocker, significantly reduced mast cell degranulation induced by BG, PGN, and A23187. These results suggest that the mitochondrial Ca2+ uniporter has an important regulatory role in BG-induced mast cell degranulation.
Animals
;
Calcimycin
;
Calcium*
;
Cytosol
;
Exocytosis
;
Inflammation
;
Ion Transport*
;
Mast Cells*
;
Membrane Potentials
;
Mice*
;
Mitochondria
;
Peptidoglycan
;
Ruthenium Red
;
Shock
6.Effect of orexin-A and orexin-1 receptor antagonist injected into the fourth ventricle of rats on food-intake and spontaneous physical activity.
Xiao-Yan PENG ; Fei-Fei GUO ; Xiang-Rong SUN ; Yan-Ling GONG ; Luo XU
Acta Physiologica Sinica 2015;67(4):379-385
The present study was aimed to investigate the effects of orexin-A and orexin-1 receptor (OX1R) antagonist injected into the fourth ventricle of rats on food-intake and spontaneous physical activity (SPA). Obese rat model was induced by high fat diet. Different doses of orexin-A or SB334867, an OX1R antagonist, were injected into the fourth ventricle of obese and normal rats respectively. SPA and food intake were monitored for 4 h after injection in both light and dark environment. In the light measurement cycle, different doses of orexin-A significantly stimulated feeding and SPA in all injected rats, and the animals' responses showed a dose-dependent manner (P < 0.05-0.01), and compared with those of normal rats, the orexin-A induced food intake and SPA were more pronounced in obese rats. In the dark measurement cycle, different doses of orexin-A had no obvious effect on food intake and SPA in both normal and obese rats (P > 0.05). In the light cycle, different doses of SB334867 significantly decreased food intake and SPA in all rats during 0-2 h and 2-4 h after injection (P < 0.05), but the food intake and SPA in obese rats were significantly greater than those of normal rats. In the dark cycle, different doses of SB334867 showed no obvious effect on food intake and SPA of normal and obese rats (P > 0.05). These results suggest that fourth cerebral ventricle nuclei may be one target for orexin-A and light condition may play an important role in orexin-A and OX1R physiological functional processes.
Animals
;
Benzoxazoles
;
pharmacology
;
Diet, High-Fat
;
Eating
;
drug effects
;
Fourth Ventricle
;
Motor Activity
;
drug effects
;
Obesity
;
Orexin Receptor Antagonists
;
pharmacology
;
Orexin Receptors
;
Orexins
;
pharmacology
;
Rats
;
Urea
;
analogs & derivatives
;
pharmacology
7.Application of calcium ionophore A23187 in ICSI for globozoospermia: A report of 2 cases and review of the literature.
Hui-jun YANG ; Mei LI ; Shui-ying MA ; Cheng LI ; Yuan-yuan FAN ; Jiao-jing LIU ; Zi-jiang CHEN
National Journal of Andrology 2015;21(4):338-341
OBJECTIVETo investigate the pathogenesis of globozoospermia, fertilization ability of round-headed sperm, and the application value of assisted oocyte activation in intracytoplasmic sperm injection (ICSI) for the wives of glohozoospermia men.
METHODSWe collected oocytes from the wives of 2 globozoospermia patients and randomly divided them into two groups after ICSI to receive calcium ionophore A23187-activation and conventional treatment, respectively. We reviewed the relevant literature published at home and abroad, and discussed the etiology of globozoospermia, fertilization ability of round-headed sperm, and treatment options for this disease.
RESULTSQuality embryos were obtained in the A23187-activation group while no fertilized oocytes, oocyte cleavage, quality embryos, or blastular formation were found in the conventional treatment group. Both women achieved pregnancy and gave birth to healthy neonates after transfer of the quality embryos from the A23187-activation group.
CONCLUSIONCalcium ionophore A23187 can be applied to ICSI for the wives of globozoospermia men and bring about desirable clinical outcomes. Meanwhile, attention should be paid to its safety.
Calcimycin ; therapeutic use ; Calcium Ionophores ; therapeutic use ; Female ; Humans ; Infertility, Male ; drug therapy ; Male ; Oocytes ; Pregnancy ; Sperm Injections, Intracytoplasmic ; Spermatozoa ; abnormalities
8.Study of change in activity of hepatic drug metabolism enzymes in rat model of chronic unpredictable mild stress.
Yu-xin ZANG ; Bing-ting SUN ; Wen-zhu ZHAO ; Na RONG ; Guo-liang DAI ; Wen-zheng JU ; Heng-shan TAN
Acta Pharmaceutica Sinica 2015;50(3):319-325
This study aimed to explore the impact of depression caused by chronic unpredictable mild stress (CUMS) on in vivo activity of six kinds of CYP450 isoforms in rats. According to 'Katz' method, the model of CUMS was established. Tolbutamide, chlorzoxazone, theophylline, midazolam, omeprazole and dextromethorphan were chosen as probe substrates of CYP2C6, CYP2E1, CYP1A2, CYP3A2, CYP2D1 and CYP2D2 of rats. Plasma concentration of six kinds of CYP450 in control group and model group were determined by LC-MS/MS and computed pharmacokinetic parameters. Consequently, metabolism of theophylline and chlorzoxazone accelerated significantly (P < 0.01), but tolbutamide, dextromethorphan, omeprazole and midazolam had no significant difference. The present study proved that depression caused by CUMS had strong induction to CYP1A2 and medium induction to CYP2E1.
Animals
;
Chlorzoxazone
;
metabolism
;
Chromatography, Liquid
;
Cytochrome P-450 Enzyme System
;
metabolism
;
Depression
;
Dextromethorphan
;
metabolism
;
Liver
;
enzymology
;
Midazolam
;
metabolism
;
Omeprazole
;
metabolism
;
Rats
;
Stress, Physiological
;
Tandem Mass Spectrometry
;
Theophylline
;
metabolism
;
Tolbutamide
;
metabolism
9.Benzoxazole Derivative B-98 Ameliorates Dextran Sulfate Sodium-induced Acute Murine Colitis and the Change of T Cell Profiles in Acute Murine Colitis Model.
Eun Mi SONG ; Sung Ae JUNG ; Jong Soo LEE ; Seung Eun KIM ; Ki Nam SHIM ; Hye Kyung JUNG ; Kwon YOO ; Hae Young PARK
The Korean Journal of Gastroenterology 2013;62(1):33-41
BACKGROUND/AIMS: The unique role of enzyme 5-lipoxygenase (5-LO) in the production of leukotrienes makes it a therapeutic target for inflammatory bowel disease (IBD). The aim of this study was to evaluate the effects of B-98, a newly synthesized benzoxazole derivatives and a novel 5-LO inhibitor, in a mouse model of IBD induced by dextran sulfate sodium (DSS). METHODS: C57BL/6 mice were randomly assigned to four groups: normal control, DSS colitis (DSS+saline), low dose B-98 (DSS+B-98 20 mg/kg) and high dose B-98 (DSS+B-98 100 mg/kg). B-98 was administered with 3% DSS intraperitoneally. The severity of the colitis was assessed via the disease activity index (DAI), colon length, and histopathologic grading. The production of inflammatory cytokines interleukin (IL)-6 was determined by RT-PCR. Th cells were examined for the proportion of Th1 cell, Th2 cell, Th9 cell, Th17 cell and Treg cell using intracellular cytometry. RESULTS: The B-98 group showed lower DAI, less shortening of the colon length and lower histopathologic grading compared with the DSS colitis group (p<0.01). The expression of IL-6 in colonic tissue was significantly lower in the B-98 groups than the DSS colitis group (p<0.05). The cellular profiles revealed that the Th1, Th9 and Th17 cells were increased in the DSS colitis group compared to the B-98 group (p<0.05). CONCLUSIONS: Our results suggest that acute intestinal inflammation is reduced in the group treated with B-98 by Th1, Th9 and Th17 involved cellular immunity.
Acute Disease
;
Animals
;
Arachidonate 5-Lipoxygenase/chemistry/metabolism
;
Benzoxazoles/chemistry/*pharmacology
;
Colitis/chemically induced/pathology/*prevention & control
;
Colon/drug effects/pathology/physiology
;
Dextran Sulfate/toxicity
;
Disease Models, Animal
;
Forkhead Transcription Factors/metabolism
;
Injections, Intraperitoneal
;
Interleukin-6/genetics/metabolism
;
Lipoxygenase Inhibitors/chemistry/*pharmacology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Severity of Illness Index
;
T-Lymphocytes/classification/*drug effects/metabolism
10.Effect of calcium on medium alkalinization induced by salicylic acid in Salvia miltiorrhiza suspension cultures.
Liancheng LIU ; Cong WANG ; Juan'e DONG ; Hui SU ; Zequn ZHUO ; Yaxin XUE
Chinese Journal of Biotechnology 2013;29(7):986-997
We studied medium alkalinization in Salvia miltiorrhiza suspension cultures treated with salicylic acid and the effect of Ca2+ in this process through application of calcium channel antagonists (Verapamil, LaCl3, LiCl, 2-APB) and ionophore A23187. The results show that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture. Verapamil and LaCl3 or LiCl and 2-APB, two different groups of calcium channel antagonist, significantly inhibited the medium alkalinization induced by salicylic acid. However, the suppression effect of verapamil or LaCl3 on medium alkalinization induced by salicylic acid was higher than that of LiCl or 2-APB. When two types of calcium channel inhibitor (LaCl3 and 2-APB) were used together, the medium alkalinization induced by salicylic acid was completely suppressed and even reduced the pH in medium. On the other hand, A23187 could promote the medium alkalinization. Based on the results above, we speculated that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture, depending on the calcium from both extracell and intracell. Moreover, calcium from extracell plays a more dominant role in this process. Reveal of relationship in this research between Ca2+ and medium alkalinization can provide theory evidence for mechanism of the plant secondary metabolism.
Calcimycin
;
pharmacology
;
Calcium
;
chemistry
;
Calcium Channel Blockers
;
pharmacology
;
Calcium Ionophores
;
pharmacology
;
Cell Culture Techniques
;
Culture Media
;
chemistry
;
Salicylic Acid
;
pharmacology
;
Salvia miltiorrhiza
;
metabolism
;
Verapamil
;
pharmacology

Result Analysis
Print
Save
E-mail