1.A Neural Circuit Controlling Virgin Female Aggression Induced by Mating-related Cues in Drosophila.
Xiaolu WAN ; Peng SHEN ; Kai SHI ; Jing LI ; Fengming WU ; Chuan ZHOU
Neuroscience Bulletin 2023;39(9):1396-1410
Females increase aggression for mating opportunities and for acquiring reproductive resources. Although the close relationship between female aggression and mating status is widely appreciated, whether and how female aggression is regulated by mating-related cues remains poorly understood. Here we report an interesting observation that Drosophila virgin females initiate high-frequency attacks toward mated females. We identify 11-cis-vaccenyl acetate (cVA), a male-derived pheromone transferred to females during mating, which promotes virgin female aggression. We subsequently reveal a cVA-responsive neural circuit consisting of four orders of neurons, including Or67d, DA1, aSP-g, and pC1 neurons, that mediate cVA-induced virgin female aggression. We also determine that aSP-g neurons release acetylcholine (ACh) to excite pC1 neurons via the nicotinic ACh receptor nAChRα7. Together, beyond revealing cVA as a mating-related inducer of virgin female aggression, our results identify a neural circuit linking the chemosensory perception of mating-related cues to aggressive behavior in Drosophila females.
Animals
;
Male
;
Female
;
Drosophila/physiology*
;
Drosophila Proteins/physiology*
;
Cues
;
Sexual Behavior, Animal/physiology*
;
Aggression/physiology*
;
Drosophila melanogaster/physiology*
2.Dual Effects of Light on Regulating Aedes aegypti Heat-Seeking Behavior.
Haonan ZHOU ; Kai SHI ; Fengming WU ; Bingcai WANG ; Jing LI ; Bowen DENG ; Chuan ZHOU
Neuroscience Bulletin 2022;38(11):1420-1424
3.Neural Control of Action Selection Among Innate Behaviors.
Neuroscience Bulletin 2022;38(12):1541-1558
Nervous systems must not only generate specific adaptive behaviors, such as reproduction, aggression, feeding, and sleep, but also select a single behavior for execution at any given time, depending on both internal states and external environmental conditions. Despite their tremendous biological importance, the neural mechanisms of action selection remain poorly understood. In the past decade, studies in the model animal Drosophila melanogaster have demonstrated valuable neural mechanisms underlying action selection of innate behaviors. In this review, we summarize circuit mechanisms with a particular focus on a small number of sexually dimorphic neurons in controlling action selection among sex, fight, feeding, and sleep behaviors in both sexes of flies. We also discuss potentially conserved circuit configurations and neuromodulation of action selection in both the fly and mouse models, aiming to provide insights into action selection and the sexually dimorphic prioritization of innate behaviors.
Animals
;
Mice
;
Male
;
Female
;
Drosophila melanogaster/physiology*
;
Sexual Behavior, Animal/physiology*
;
Instinct
;
Neurons/physiology*
;
Aggression/physiology*
4.Serotonin Signaling Modulates Sexual Receptivity of Virgin Female Drosophila.
Baoxu MA ; Rencong WANG ; Yaohua LIU ; Bowen DENG ; Tao WANG ; Fengming WU ; Chuan ZHOU
Neuroscience Bulletin 2022;38(11):1277-1291
The choice of females to accept or reject male courtship is a critical decision for animal reproduction. Serotonin (5-hydroxytryptamine; 5-HT) has been found to regulate sexual behavior in many species, but it is unclear how 5-HT and its receptors function to regulate different aspects of sexual behavior. Here we used Drosophila melanogaster as the model animal to investigate how 5-HT and its receptors modulate female sexual receptivity. We found that knockout of tryptophan hydroxylase (Trh), which is involved in the biosynthesis of 5-HT, severely reduced virgin female receptivity without affecting post-mating behaviors. We identified a subset of sexually dimorphic Trh neurons that co-expressed fruitless (fru), in which the activity was correlated with sexual receptivity in females. We also found that 5-HT1A and 5-HT7 receptors regulate virgin female receptivity. Our findings demonstrate how 5-HT functions in sexually dimorphic neurons to promote virgin female receptivity through two of its receptors.
Animals
;
Male
;
Female
;
Drosophila/physiology*
;
Drosophila melanogaster/physiology*
;
Serotonin
;
Drosophila Proteins/physiology*
;
Sexual Behavior, Animal/physiology*
;
Transcription Factors
;
Nerve Tissue Proteins
5.cVEMP correlated with imbalance in a mouse model of vestibular disorder.
Reina NEGISHI-OSHINO ; Nobutaka OHGAMI ; Tingchao HE ; Kyoko OHGAMI ; Xiang LI ; Masashi KATO
Environmental Health and Preventive Medicine 2019;24(1):39-39
BACKGROUND:
Cervical vestibular evoked myogenic potential (cVEMP) testing is a strong tool that enables objective determination of balance functions in humans. However, it remains unknown whether cVEMP correctly expresses vestibular disorder in mice.
OBJECTIVE:
In this study, correlations of cVEMP with scores for balance-related behavior tests including rotarod, beam, and air-righting reflex tests were determined in ICR mice with vestibular disorder induced by 3,3'-iminodipropiontrile (IDPN) as a mouse model of vestibular disorder.
METHODS:
Male ICR mice at 4 weeks of age were orally administered IDPN in saline (28 mmol/kg body weight) once. Rotarod, beam crossing, and air-righting reflex tests were performed before and 3-4 days after oral exposure one time to IDPN to determine balance functions. The saccule and utricles were labeled with fluorescein phalloidin. cVEMP measurements were performed for mice in the control and IDPN groups. Finally, the correlations between the scores of behavior tests and the amplitude or latency of cVEMP were determined with Spearman's rank correlation coefficient. Two-tailed Student's t test and Welch's t test were used to determine a significant difference between the two groups. A difference with p < 0.05 was considered to indicate statistical significance.
RESULTS:
After oral administration of IDPN at 28 mmol/kg, scores of the rotarod, beam, and air-righting reflex tests in the IDPN group were significantly lower than those in the control group. The numbers of hair cells in the saccule, utricle, and cupula were decreased in the IDPN group. cVEMP in the IDPN group was significantly decreased in amplitude and increased in latency compared to those in the control group. cVEMP amplitude had significant correlations with the numbers of hair cells as well as scores for all of the behavior tests in mice.
CONCLUSIONS
This study demonstrated impaired cVEMP and correlations of cVEMP with imbalance determined by behavior tests in a mouse model of vestibular disorder.
Animals
;
Behavior, Animal
;
drug effects
;
physiology
;
Disease Models, Animal
;
Hair Cells, Vestibular
;
pathology
;
Male
;
Mice
;
Mice, Inbred ICR
;
Nitriles
;
adverse effects
;
Postural Balance
;
drug effects
;
physiology
;
Saccule and Utricle
;
pathology
;
Sensation Disorders
;
chemically induced
;
physiopathology
;
Vestibular Diseases
;
chemically induced
;
diagnosis
;
pathology
;
physiopathology
;
Vestibular Evoked Myogenic Potentials
;
drug effects
;
physiology
;
Vestibular Function Tests
6.A Shared Neural Node for Multiple Innate Behaviors in Drosophila.
Neuroscience Bulletin 2018;34(6):1103-1104
Animals
;
Behavior, Animal
;
physiology
;
Drosophila melanogaster
;
physiology
;
Female
;
Instinct
;
Male
;
Nerve Net
;
physiology
;
Neurons
;
physiology
7.Evaluation of neuroactive effects of ethanol extract of Schisandra chinensis, Schisandrin, and Schisandrin B and determination of underlying mechanisms by zebrafish behavioral profiling.
Jia-Wei WANG ; Feng-Yin LIANG ; Xiang-Shuo OUYANG ; Pei-Bo LI ; Zhong PEI ; Wei-Wei SU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(12):916-925
Schisandra chinensis, a traditional Chinese medicine (TCM), has been used to treat sleep disorders. Zebrafish sleep/wake behavioral profiling provides a high-throughput platform to screen chemicals, but has never been used to study extracts and components from TCM. In the present study, the ethanol extract of Schisandra chinensis and its two main lignin components, schisandrin and schisandrin B, were studied in zebrafish. We found that the ethanol extract had bidirectional improvement in rest and activity in zebrafish. Schisandrin and schisandrin B were both sedative and active components. We predicted that schisandrin was related to serotonin pathway and the enthanol extract of Schisandra chinensis was related to seoronin and domapine pathways using a database of zebrafish behaviors. These predictions were confirmed in experiments using Caenorhabditis elegans. In conclusion, zebrafish behavior profiling could be used as a high-throughput platform to screen neuroactive effects and predict molecular pathways of extracts and components from TCM.
Animals
;
Behavior, Animal
;
drug effects
;
Caenorhabditis elegans
;
Central Nervous System Agents
;
chemistry
;
isolation & purification
;
pharmacology
;
Cyclooctanes
;
analysis
;
isolation & purification
;
pharmacology
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
Lignans
;
analysis
;
isolation & purification
;
pharmacology
;
Plant Extracts
;
chemistry
;
isolation & purification
;
pharmacology
;
Polycyclic Compounds
;
analysis
;
isolation & purification
;
pharmacology
;
Schisandra
;
chemistry
;
Zebrafish
;
physiology
9.Differences in sympathetic nervous system activity and NMDA receptor levels within the hypothalamic paraventricular nucleus in rats with differential ejaculatory behavior.
Jia-Dong XIA ; Jie CHEN ; Bai-Bing YANG ; Hai-Jian SUN ; Guo-Qing ZHU ; Yu-Tian DAI ; Jie YANG ; Zeng-Jun WANG
Asian Journal of Andrology 2018;20(4):355-359
Differences in intravaginal ejaculation latency reflect normal biological variation, but the causes are poorly understood. Here, we investigated whether variation in ejaculation latency in an experimental rat model is related to altered sympathetic nervous system (SNS) activity and expression of N-methyl-D-aspartic acid (NMDA) receptors in the paraventricular nucleus of the hypothalamus (PVN). Male rats were classified as "sluggish," "normal," and "rapid" ejaculators on the basis of ejaculation frequency during copulatory behavioral testing. The lumbar splanchnic nerve activity baselines in these groups were not significantly different at 1460 ± 480 mV, 1660 ± 600 mV, and 1680 ± 490 mV, respectively (P = 0.71). However, SNS sensitivity was remarkably different between the groups (P < 0.01), being 28.9% ± 8.1% in "sluggish," 48.4% ± 7.5% in "normal," and 88.7% ± 7.4% in "rapid" groups. Compared with "normal" ejaculators, the percentage of neurons expressing NMDA receptors in the PVN of "rapid" ejaculators was significantly higher, whereas it was significantly lower in "sluggish" ejaculators (P = 0.01). In addition, there was a positive correlation between the expression of NMDA receptors in the PVN and SNS sensitivity (r = 0.876, P = 0.02). This study shows that intravaginal ejaculatory latency is associated with SNS activity and is mediated by NMDA receptors in the PVN.
Animals
;
Copulation
;
Ejaculation/physiology*
;
Female
;
Male
;
Neurons/physiology*
;
Paraventricular Hypothalamic Nucleus/physiology*
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Sexual Behavior, Animal/physiology*
;
Splanchnic Nerves/physiology*
;
Sympathetic Nervous System/physiology*
10.Effects of Repetitive Transcranial Magnetic Stimulation on Behavioral Recovery during Early Stage of Traumatic Brain Injury in Rats.
Kyung Jae YOON ; Yong Taek LEE ; Pil Wook CHUNG ; Yun Kyung LEE ; Dae Yul KIM ; Min Ho CHUN
Journal of Korean Medical Science 2015;30(10):1496-1502
Repetitive transcranial magnetic stimulation (rTMS) is a promising technique that modulates neural networks. However, there were few studies evaluating the effects of rTMS in traumatic brain injury (TBI). Herein, we assessed the effectiveness of rTMS on behavioral recovery and metabolic changes using brain magnetic resonance spectroscopy (MRS) in a rat model of TBI. We also evaluated the safety of rTMS by measuring brain swelling with brain magnetic resonance imaging (MRI). Twenty male Sprague-Dawley rats underwent lateral fluid percussion and were randomly assigned to the sham (n=10) or the rTMS (n=10) group. rTMS was applied on the fourth day after TBI and consisted of 10 daily sessions for 2 weeks with 10 Hz frequency (total pulses=3,000). Although the rTMS group showed an anti-apoptotic effect around the peri-lesional area, functional improvements were not significantly different between the two groups. Additionally, rTMS did not modulate brain metabolites in MRS, nor was there any change of brain lesion or edema after magnetic stimulation. These data suggest that rTMS did not have beneficial effects on motor recovery during early stages of TBI, although an anti-apoptosis was observed in the peri-lesional area.
Animals
;
Behavior, Animal/physiology
;
Brain/*pathology
;
Brain Injuries/*pathology/psychology/*therapy
;
Disease Models, Animal
;
Magnetic Resonance Imaging
;
Male
;
Motor Activity/physiology
;
Rats
;
Rats, Sprague-Dawley
;
Recovery of Function/*physiology
;
Transcranial Magnetic Stimulation/*methods
;
Treatment Outcome

Result Analysis
Print
Save
E-mail