1.Antitumor effect and mechanism of different extracts of cultivated Phellinus vaninii on H22 tumor bearing mice.
Sheng HE ; Haiying BAO ; Ying WEI ; Ying LIU ; Jie LIU
Chinese Journal of Biotechnology 2022;38(3):1025-1038
In order to explore the antitumor effect and mechanism of different extracts of cultivated Phellinus vaninii fruit body on H22 tumor bearing mice, 150 ICR mice were randomly divided into blank group, model group, CTX group, P. vaninii water extract group, ethanol extract group, petroleum ether extract group and crude polysaccharide group. H22 liver cancer cells were used to establish a solid tumor model and the mice were sacrificed on the 10th day after administration. The spleen and thymus organ index and tumor inhibition rate were calculated, the serum levels of TNF-α, INF-γ, VEGF, and hematoxylin-eosin were detected, and the immunohistochemical staining method was used to observe the pathological changes of tumor tissues, while Western blotting was used to detect the expression of tumor-related proteins. The high-dose petroleum ether extract group showed the best tumor inhibition rate (73.21%), increased serum levels of TNF-α, IFN-γ, and VEGF, as well as significantly promoted tumor necrosis and ablation. The immunohistochemistry of the water extract group showed negative regulation, indicating an insignificant tumor suppression. Western blotting showed the apoptosis genes Caspase-3, Caspase-9 and pathway genes NF-κB and JAK were all highly expressed in each administration group compared with the model group, and their expression levels gradually decreased with increasing doses. In summary, the petroleum ether extract of P. vaninii fruit body showed a significant anti-tumor effect which is presumably mediated through the mitochondrial pathway. The metabolism of drug in the body induces activation of Caspase-3 and Caspase-9 apoptotic proteins by Bax, Bcl-2, and TNF, which further caused nuclear chromatin or DNA to condense or degrade, and subsequently destroy the normal proliferation of tumor cells, thereby inducing their apoptosis and inhibiting tumor growth.
Animals
;
Apoptosis
;
Basidiomycota
;
Mice
;
Mice, Inbred ICR
;
Neoplasms/metabolism*
2.Utilization of used fungus-growing materials of Gastrodia elata.
Jin-Qiang ZHANG ; Wei-Ke JIANG ; Lan-Ping GUO ; Zhen OUYANG ; Yuan WEI ; Jie YANG ; Cheng-Hong XIAO ; Jiao XU ; Guang-Wen ZHANG ; Tao ZHOU
China Journal of Chinese Materia Medica 2022;47(9):2309-2314
This study aims to explore the resource utilization of used fungus-growing materials produced in the cultivation of Gastrodia elata. To be specific, based on the production practice, this study investigated the recycling mechanism of used fungus-growing materials of G. elata by Phallus inpudicus. To screen edible fungi with wide adaptability, this study examined the allelopathic effects of Armillaria mellea secretions on P. impudicus and 6 kinds of large edible fungi and the activities of enzymes related to degradation of the used fungus-growing materials of G. elata. The results showed that P. impudicus can effectively degrade cellulose, hemicellulose, and lignin in used fungus-growing materials of G. elata. The cellulase activity of A. mellea was significantly higher than that of P. impudicus, and the activities of lignin peroxidase, polyphenol oxidase, and xylanase of P. impudicus were significantly higher than those of A. mellea, which was the important reason why A. mellea and P. impudicus used different parts and components of the used fungus-growing materials to absorb carbon sources and develop ecological niche differences. The growth of P. impudicus was significantly inhibited on the used fungus-growing materials of G. elata. The secretions of A. mellea had allelopathic effects on P. impudicus and other edible fungi, and the allelopathic effects were related to the concentration of allelopathy substances. The screening result showed that the growth and development of L. edodes and A. auricular were not significantly affected by 30% of A. mellea liquid, indicating that they had high resistance to the allelopathy of A. mellea. The results showed that the activities of extracellular lignin peroxidase, polyphenol oxidase, and xylanase of the two edible fungi were similar to those of P. impudicus, and the cellulase activity was higher than that of P. impudicus. This experiment can be further verified by small-scale production tests.
Agaricales
;
Ascomycota
;
Basidiomycota
;
Catechol Oxidase
;
Cellulases
;
Gastrodia
3.Identification,biological characteristics and fungicide screening of pathogen of southern blight in Cynanchum stauntonii.
Jin-Xin LI ; Qiao-Huan CHEN ; Yu-Huan MIAO ; Tie-Lin WANG ; Da-Hui LIU
China Journal of Chinese Materia Medica 2021;46(13):3303-3310
During the high-temperature and rainy season from June to October in 2017-2019,serious southern blight broke out in the Cynanchum stauntonii planting area in Tuanfeng county,Hubei province,which had a great impact on the yield and quality of medicinal materials. In this study,the pathogen of C. stauntonii was isolated,purified,and identified,and the pathogenicity was tested according to Koch's postulates. Meanwhile,the biological characteristics of the pathogen were analyzed. On this basis,the effective fungicides were screened in laboratory. Finally,the pathogen( BQ-1) was identified as Athelia rolfsii( Deuteromycotina,Basidiomycota,anamorph: Sclerotium rolfsii). The optimum growth conditions for BQ-1 were 25-30 ℃,p H 5-8,and alternating light and dark.The effective chemical fungicides were lime-sulphur-synthelic-solution( LSSS) and flusilazole,and the effective botanical fungicide was osthole. BQ-1 was highly homologous to the pathogen HS-1 of peanut southern blight,with the similarity of 18 S r DNA and TEF sequences at 99. 09%. The southern blight in C. stauntonii might be resulted from that in peanut. In the production of C. stauntonii,the following measures should be taken: avoiding rotation or neighboring with peanut,draining water from June to October to reduce humidity,and reasonably applying fungicides.
Basidiomycota
;
Cynanchum
;
Fungicides, Industrial/pharmacology*
;
Humidity
4.Status quo of and challenges for research on rust disease in medicinal plants.
Zhong-Lian YU ; Juan YANG ; Mei-Yan LEI ; Jian QUAN ; Tian-Jian YANG ; Cheng-Qian YANG
China Journal of Chinese Materia Medica 2021;46(14):3566-3576
Medicinal plants are beneficial to human health. However,most of the major producing regions of medicinal plants suffer from rust disease,which threatens the yield and quality of Chinese medicinal materials,thus causes huge economic loss,and hinders the sustainable development of the Chinese medicine industry. By the end of 2020,rust disease had been reported in medicinal plants of 76 species and 33 families. In the 76 species,79 rust pathogens were detected. The majority of these pathogens belonged to Puccinia( 33,39. 24%),Coleosporium( 14,15. 19%),and Aecidium( 11,13. 92%). Of these 79 rust pathogens,10 were autoecious and 13 were heteroecious. Through literature research,this study reviewed the symptoms,pathogen species,severity and distribution,prevalence and occurrence conditions,and control measures of rust disease in medicinal plants,and thereby summarized the research status of rust disease in medicinal plants and the gap with other plants,which is expected to serve as a reference for further research on rust disease in medicinal plants.
Basidiomycota/genetics*
;
Humans
;
Plant Diseases
;
Plants, Medicinal
5.Qualitative and quantitative analysis of nucleosides and nucleobases in Phylloporia ribis by UPLC-Q-TOF-MS and HPLC.
Liang-Mian CHEN ; Xiao-Qian LIU ; Yong-Xin ZHANG ; Hui-Min GAO ; Wei-Hong FENG ; Chen-Xiao-Ning MENG ; Zhi-Min WANG
China Journal of Chinese Materia Medica 2021;46(12):2912-2922
The dried fruit body of Phylloporia ribis(Hymenochaetaceae), which prefers to live on the stumps of Lonicera japonica(Caprifoliaceae), has a variety of activities, whereas its pharmacodynamic material basis is not completely clear and there are few reports on its quality control and evaluation. In this study, an UPLC-Q-TOF-MS method was used to analyze the nucleosides and nucleobases in P. ribis and a HPLC method was established for simultaneous determination of 10 nucleosides and nucleobases. MS and MS/MS data were acquired in positive ion mode. Based on the data comparison of the sample and the reference substance, the literature data and the compound databases of ChemSpider and PubChem, 18 nucleosides and nucleobases were identified qualitatively from the water extract of P. ribis for the first time. After optimization, the HPLC was performed using a Welch Ultimate AQ C_(18) column(4.6 mm×250 mm, 5 μm) by gradient elution with acetonitrile and water as mobile phase, the flow rate of 1.0 mL·min~(-1), the detection wavelength of 260 nm, and the column temperature of 30 ℃. Through the investigation of the extraction method, solvent and time, it was determined that the test solution should be obtained by cold water extraction for 18 h. At the present HPLC conditions, 10 components of uracil, cytidine, hypoxanthine, uridine, thymine, inosine, guanosine, 2'-deoxyinosine, 2'-deoxyguanosine and thymidine could be well separated(R > 1.5) and showed good linearity(r > 0.999 9) in the concentration ranges of 0.247-24.7, 0.283-28.3, 0.273-27.3, 0.256-25.6, 0.257-25.7, 0.318-31.8, 0.245-24.5, 0.267-26.7, 0.250-25.0 and 0.267-26.7 mg·L~(-1), respectively. The average reco-veries of 10 components were 95.78%-104.5%, and the RSDs were 2.2%-5.2%(n=6). The contents of 10 nucleosides and nucleobases in different samples of P. ribis varied greatly, which were 0.021-0.122, 0.004-0.029, 0.014-0.226, 0.009-0.442, 0.003-0.014, 0.002-0.146, 0.007-0.098, 0-0.054, 0.005-0.069, 0.004-0.081 and 0.072-1.28 mg·g~(-1) for uracil, cytidine, hypoxanthine, uridine, thymine, inosine, guanosine, 2'-deoxyinosine, 2'-deoxyguanosine, thymidine and total 10 components, respectively. These results demonstrated that the components had significant differences in the internal quality, and good quality control was needed to ensure the medical efficacy. This study provides a scientific basis for the discovery of pharmacodynamic ingredients, quality control and evaluation of P. ribis.
Basidiomycota
;
Chromatography, High Pressure Liquid
;
Guanosine
;
Nucleosides
;
Tandem Mass Spectrometry
6.Isolation and identification of pathogen causing damping off at seedling stage of Trollius chinensis.
Yong LI ; Rong WANG ; Ruo-Fan WEI ; Wan-Long DING
China Journal of Chinese Materia Medica 2021;46(12):3102-3105
Trollius chinensis is a traditional Chinese medicinal material in China, the wild resource of T. chinensis are now exhausted, and commercial medicinal T. chinensis mainly depends on artificial cultivation. As one of the most severely happened diseases at the seedling period, damping off has been a serious threaten to the breeding of T. chinensis seedlings. However, no related research have been reported so far. So, the authors collected damping-off samples of T. chinensis in 2018 from seedling breeding nursery in Guyuan, Hebei province, and carried out study on taxonomic identification of the pathogen. Damping off occurs in the T. chinensis production area from mid-May to late June every year. At the beginning, brown lesions were observed on the basal stem, then the lesions circumferential expanded and constricted, and finally resulted in the fall and death of T. chinensis seedlings. Pathogenic isolate was growing rapidly on the PDA medium, well developed aerial mycelia were grey white at first, then turned brown gradually, and a great number of small dark brown sclerotia were developed in the middle and periphery of the colony. Mycelial diameter of the pathogen was about 7 to 10 μm, near right angle or acute angle branches, near branches with septa, branches and septa with constriction. After the healthy T. chinensis seedlings were inoculated by pathogenic isolate, damping-off was observed soon, and the symptom was as same as those observed in the field. Through homogenous blast, the rDNA-ITS sequence of the pathogenic isolate shown 99.49% to 99.84% homology with Rhizoctonia solani, R. solani AG-1 IC mycelium anastomosis group and Thanatephorus cucumeris, the sexual type of Rhizoctonia. Furthermore, obvious mycelial anastomosis phenomena were observed when the pathogenic isolate and R. solani AG-1 IC strain were confronting cultured. Based on the results above, the pathogenic isolate causing damping off of T. chinensis was identified as R. solani AG-1 IC mycelial anastomosis group. RESULTS:: in the present work have important significance for further research on basic biology of the pathogen and integrated control of damping off causing by it on T. chinensis.
Basidiomycota
;
Plant Breeding
;
Plant Diseases
;
Rhizoctonia
;
Seedlings
7.Sesquiterpenes and polyphenols with glucose-uptake stimulatory and antioxidant activities from the medicinal mushroom Sanghuangporus sanghuang.
Jin-Jin ZHANG ; Bao-Song CHEN ; Huan-Qin DAI ; Jin-Wei REN ; Li-Wei ZHOU ; Sheng-Hua WU ; Hong-Wei LIU
Chinese Journal of Natural Medicines (English Ed.) 2021;19(9):693-699
A chemical investigation on the fermentation products of Sanghuangporus sanghuang led to the isolation and identification of fourteen secondary metabolites (1-14) including eight sesquiterpenoids (1-8) and six polyphenols (9-14). Compounds 1-3 were sesquiterpenes with new structures which were elucidated based on NMR spectroscopy, high resolution mass spectrometry (HRMS) and electronic circular dichroism (ECD) data. All the isolates were tested for their stimulation effects on glucose uptake in insulin-resistant HepG2 cells, and cellular antioxidant activity. Compounds 9-12 were subjected to molecular docking experiment to primarily evaluate their anti-coronavirus (SARS-CoV-2) activity. As a result, compounds 9-12 were found to increase the glucose uptake of insulin-resistant HepG2 cells by 18.1%, 62.7%, 33.7% and 21.4% at the dose of 50 μmol·L
Agaricales
;
Antioxidants/pharmacology*
;
Basidiomycota
;
COVID-19/drug therapy*
;
Glucose
;
Humans
;
Molecular Docking Simulation
;
Polyphenols/pharmacology*
;
SARS-CoV-2
;
Sesquiterpenes/pharmacology*
8.Discovery and functional verification of endogenous glucanases for scleroglucan hydrolysis in Sclerotium rolfsii.
Weizhu ZENG ; Runqing TAN ; Jingwen ZHOU
Chinese Journal of Biotechnology 2021;37(1):207-217
Scleroglucan is a high-molecular water-soluble microbial exopolysaccharide and mainly applied in the fields of petroleum, food, medicine and cosmetics. The high molecular weight of scleroglucan produced by microbial fermentation leads to low solubility, high viscosity and poor dispersibility, thus bringing a series of difficulties to extraction, preservation and application. It is important to explore suitable degradation method to adjust the molecular weight of scleroglucan for expanding its industrial application. Taking Sclerotium rolfsii WSH-G01 as a model strain, in which functional annotations of the glucanase genes were conducted by whole genome sequencing. Based on design of culture system for culture system for differential expression of β-glucanase, endogenous β-glucanase genes in S. rolfsii WSH-G01 were excavated by transcriptomics analysis. Functions of these potential hydrolases were further verified. Finally, 14 potential endogenous hydrolase genes were obtained from S. rolfsii. After heterologous overexpression in Pichia pastoris, 10 soluble enzymes were obtained and 5 of them had the activity of laminarin hydrolysis by SDS-PAGE and enzyme activity analysis. Further investigation of the 5 endogenous hydrolases on scleroglucan degradation showed that enzyme GME9860 has positive hydrolysis effect. The obtained results provide references not only for obtaining low and medium molecular weight of scleroglucan with enzymatic hydrolysis, but also for producing different molecular weight of scleroglucan during S. rolfsii fermentation process with metabolic engineering.
Basidiomycota/genetics*
;
Glucans
;
Hydrolysis
;
Saccharomycetales
9.Identification and biological characteristics of southern blight causing root rot on three medicine plants of Iridaceae in Dabie Mountains.
Yu LIU ; Ya-Wen YANG ; Yu-Huan MIAO ; Qiao-Huan CHEN ; Tie-Lin WANG ; Da-Hui LIU ; Bi-Sheng HUANG
China Journal of Chinese Materia Medica 2021;46(2):290-297
In order to identify the species and biological characteristics of the pathogen of southern blight from three kinds of Chinese medicine of Iridaceae(Belamcanda chinensis, Iris tectorum and I. japonica) in Dabie Mountains, the isolation, identification, pathogenicity and biological characteristics of the pathogens were studied according to Koch's postulates. In addition, 9 chemical fungicides, 3 botanical fungicides and 5 microbial fungicides were used to evaluate their inhibition to the isolates in vitro. The results showed that all the strains(SG-Q, YW-Q, and HDH-Q) isolated and purified from the diseased plants of B. chinensis, I. tectorum and I. japonica, respectively, were identified as Sclerotium rolfsii through morphological observation and sequence aligement of 18 S rDNA, rDNA-ITS and TEF. Field observations showed that the intensity of the disease incidence of three Iridaceae plants was B. chinensis>I. japonica> I. tectorum, and the pathogenicity of the strains was SG-Q>YW-Q>HDH-Q. For biological characteristics, SG-Q strain was suitable for growth under the 12 h light/12 h dark cycle, with the optimal growth temperature of 30 ℃ and pH of 5. Among the 9 tested chemical fungicides, 29% lime sulphure and 10% flusilazole had stronger inhibitory effect on mycelia growth of SG-Q. For 3 botanical fungicides, 1% osthol, 20% eugenol and 0.5% berberine could effectively inhibt the mycelial growth of SG-Q and cause the morphological variation of the pathogen. For 5 microbial fungicides, Trichoderma harzianum and Bacillus subtilis had better inhibition on the mycelium growth of SG-Q.
Basidiomycota
;
Hypocreales
;
Iridaceae
;
Medicine
10.Progress in studies and control strategies for diseases of Coptis chinensis.
Yong-Xi DU ; Jing-Yi JIANG ; Yang XU ; Zhan-Hong LI ; Tie-Lin WANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2021;46(5):1067-1072
Coptis chinensis is one of bulk traditional herbal medicines in China. In recent years, the occurrence of various diseases has caused great yield loss and quality reduction of C. chinensis, which has become an important threat of herbal medicine industry. Here we reviewed the symptoms, pathogens, epidemiology and control methods of 6 common diseases of C. chinensis including root rot, southern blight, violet root rot, leaf spot, powdery mildew, and anthracnose. This review aims at providing guidance for the disease diagnostic, pathogen identification, and control strategies of the diseases on C. chinensis, and facilitate the growth of traditional medicine industry.
Basidiomycota
;
China/epidemiology*
;
Coptis
;
Plants, Medicinal

Result Analysis
Print
Save
E-mail