1.Regulation of kidney on potassium balance and its clinical significance.
Qiong-Hong XIE ; Chuan-Ming HAO
Acta Physiologica Sinica 2023;75(2):216-230
Virtually all of the dietary potassium intake is absorbed in the intestine, over 90% of which is excreted by the kidneys regarded as the most important organ of potassium excretion in the body. The renal excretion of potassium results primarily from the secretion of potassium by the principal cells in the aldosterone-sensitive distal nephron (ASDN), which is coupled to the reabsorption of Na+ by the epithelial Na+ channel (ENaC) located at the apical membrane of principal cells. When Na+ is transferred from the lumen into the cell by ENaC, the negativity in the lumen is relatively increased. K+ efflux, H+ efflux, and Cl- influx are the 3 pathways that respond to Na+ influx, that is, all these 3 pathways are coupled to Na+ influx. In general, Na+ influx is equal to the sum of K+ efflux, H+ efflux, and Cl- influx. Therefore, any alteration in Na+ influx, H+ efflux, or Cl- influx can affect K+ efflux, thereby affecting the renal K+ excretion. Firstly, Na+ influx is affected by the expression level of ENaC, which is mainly regulated by the aldosterone-mineralocorticoid receptor (MR) pathway. ENaC gain-of-function mutations (Liddle syndrome, also known as pseudohyperaldosteronism), MR gain-of-function mutations (Geller syndrome), increased aldosterone levels (primary/secondary hyperaldosteronism), and increased cortisol (Cushing syndrome) or deoxycorticosterone (hypercortisolism) which also activate MR, can lead to up-regulation of ENaC expression, and increased Na+ reabsorption, K+ excretion, as well as H+ excretion, clinically manifested as hypertension, hypokalemia and alkalosis. Conversely, ENaC inactivating mutations (pseudohypoaldosteronism type 1b), MR inactivating mutations (pseudohypoaldosteronism type 1a), or decreased aldosterone levels (hypoaldosteronism) can cause decreased reabsorption of Na+ and decreased excretion of both K+ and H+, clinically manifested as hypotension, hyperkalemia, and acidosis. The ENaC inhibitors amiloride and Triamterene can cause manifestations resembling pseudohypoaldosteronism type 1b; MR antagonist spironolactone causes manifestations similar to pseudohypoaldosteronism type 1a. Secondly, Na+ influx is regulated by the distal delivery of water and sodium. Therefore, when loss-of-function mutations in Na+-K+-2Cl- cotransporter (NKCC) expressed in the thick ascending limb of the loop and in Na+-Cl- cotransporter (NCC) expressed in the distal convoluted tubule (Bartter syndrome and Gitelman syndrome, respectively) occur, the distal delivery of water and sodium increases, followed by an increase in the reabsorption of Na+ by ENaC at the collecting duct, as well as increased excretion of K+ and H+, clinically manifested as hypokalemia and alkalosis. Loop diuretics acting as NKCC inhibitors and thiazide diuretics acting as NCC inhibitors can cause manifestations resembling Bartter syndrome and Gitelman syndrome, respectively. Conversely, when the distal delivery of water and sodium is reduced (e.g., Gordon syndrome, also known as pseudohypoaldosteronism type 2), it is manifested as hypertension, hyperkalemia, and acidosis. Finally, when the distal delivery of non-chloride anions increases (e.g., proximal renal tubular acidosis and congenital chloride-losing diarrhea), the influx of Cl- in the collecting duct decreases; or when the excretion of hydrogen ions by collecting duct intercalated cells is impaired (e.g., distal renal tubular acidosis), the efflux of H+ decreases. Both above conditions can lead to increased K+ secretion and hypokalemia. In this review, we focus on the regulatory mechanisms of renal potassium excretion and the corresponding diseases arising from dysregulation.
Humans
;
Bartter Syndrome/metabolism*
;
Pseudohypoaldosteronism/metabolism*
;
Potassium/metabolism*
;
Aldosterone/metabolism*
;
Hypokalemia/metabolism*
;
Gitelman Syndrome/metabolism*
;
Hyperkalemia/metabolism*
;
Clinical Relevance
;
Epithelial Sodium Channels/metabolism*
;
Kidney Tubules, Distal/metabolism*
;
Sodium/metabolism*
;
Hypertension
;
Alkalosis/metabolism*
;
Water/metabolism*
;
Kidney/metabolism*
2.Functional characterization of SLC12A1 gene variants in 3 patients with Bartter syndrome type Ⅰ.
Yu Gen SHA ; Chun Li WANG ; Zhi Wei DU ; Bi Xia ZHENG ; Wei ZHOU ; Fei ZHAO ; Gui Xia DING ; Ai Hua ZHANG
Chinese Journal of Pediatrics 2022;60(2):129-133
Objective: To clarify the molecular basis of patients with Bartter syndrome type I and explore the therapeutic effect of trafficking-defective variations by chemical chaperone 4-Phenylbutyric acid(4-PBA). Methods: The clinical characteristics, laboratory findings and genetic data of 3 patients diagnosed with Bartter syndrome type I who were admitted to Department of Nephrology, Children's Hospital of Nanjing Medical University from 2017 to 2018 were retrospectively analyzed. Wild type and variant SLC12A1 gene constructs were transiently overexpressed in HEK293 cells. Western blotting was used to detect the expression levels of Na+-K+-2Cl-cotransporter(NKCC2) protein. Immunofluorescent staining was applied to investigate the subcellular localization of NKCC2 protein. In addition, the effect of the chemical chaperone 4-PBA on the expression and localization of the SLC12A1 gene variants was investigated. Unpaired t test was used for statistical analysis of 4-PBA treatment. Results: All the 3 patients (2 males and 1 female), aged 3.0, 4.0 and 1.2 years, respectively. All patients had antenatal onset with polyhydramnios and were born prematurely. After birth, all patients presented with hypochlorine alkalosis accompanied by hypokalemia and hyponatremia. Sequencing analysis revealed that the 3 patients were homozygotes or compound heterozygotes for variants in the SLC12A1 gene. In HEK293 cells, the surface expression of NKCC2 in 3 variants (p.L463S, p.L479V, p.507-510del) are all lower than in wild type (0.718±0.039, 0.287±0.081, 0.025±0.156 vs. 1.001±0.028, t=5.92, 8.35, 30.49, all P<0.01). Moreover, the total protein expression of p.L479V and p.507-510del group were all lower than that in wild type group (0.630±0.032, 0.043±0.003 vs. 1.000±0.111, t=3.21, 8.65, all P<0.05). 4-PBA treatment increased the mature protein expression level of the p.L463S and p. L479V group in 4-PBA treatment group are all higher than the untreated group (0.459±0.018 vs. 1.123±0.024, 0.053±0.012 vs. 1.256±0.037, t=2.75, 18.35, all P<0.05). Cytoplasmic retention of the L479V and 507-510del variants were observed by immunofluorescent staining. 4-PBA treatment could rescue a number of NKCC2 L479V variants to the membrane. Conclusions: The 3 SLC12A1 variants cause expression or subcellular localization defects of the protein. The findings that plasma membrane expression and activity can be rescued by 4PBA might help to develop novel therapeutic strategy for Bartter syndrome type Ⅰ.
Bartter Syndrome/genetics*
;
Child, Preschool
;
Female
;
HEK293 Cells
;
Homozygote
;
Humans
;
Infant
;
Male
;
Pregnancy
;
Retrospective Studies
;
Solute Carrier Family 12, Member 1/genetics*
3.Clinical and gene mutation features of cystic fibrosis: an analysis of 8 cases.
Na ZHANG ; Jian-Hua LIU ; Ya-Juan CHU ; Jin-Feng SHUAI ; Kun-Ling HUANG
Chinese Journal of Contemporary Pediatrics 2022;24(7):771-777
OBJECTIVES:
To study the clinical features and gene mutation sites of children with cystic fibrosis (CF), in order to improve the understanding of CF to reduce misdiagnosis and missed diagnosis.
METHODS:
A retrospective analysis was performed on the medical records of 8 children with CF who were diagnosed in Hebei Children's Hospital from 2018 to 2021.
RESULTS:
Among the 8 children with CF, there were 5 boys and 3 girls, with an age of 3-48 months (median 8 months) at diagnosis, and the age of onset ranged from 0 to 24 months (median 2.5 months). Clinical manifestations included recurrent respiratory infection in 7 children, sinusitis in 3 children, bronchiectasis in 4 children, diarrhea in 8 children, fatty diarrhea in 3 children, suspected pancreatic insufficiency in 6 children, pancreatic cystic fibrosis in 1 child, malnutrition in 5 children, and pseudo-Bartter syndrome in 4 children. The most common respiratory pathogens were Pseudomonas aeruginosa (4 children). A total of 16 mutation sites were identified by high-throughput sequencing, multiplex ligation-dependent probe amplification, and Sanger sequencing, including 5 frameshift mutations, 4 nonsense mutations, 4 missense mutations, 2 exon deletions, and 1 splice mutation. CFTR mutations were found in all 8 children. p.G970D was the most common mutation (3 children), and F508del mutation was observed in one child. Four novel mutations were noted: deletion exon15, c.3796_3797dupGA(p.I1267Kfs*12), c.2328dupA(p.V777Sfs*2), and c.2950G>A(p.D984N).
CONCLUSIONS
p.G970D is the most common mutation type in children with CF. CF should be considered for children who have recurrent respiratory infection or test positive for Pseudomonas aeruginosa, with or without digestive manifestations or pseudo-Bartter syndrome.
Bartter Syndrome
;
Child, Preschool
;
Cystic Fibrosis/genetics*
;
Cystic Fibrosis Transmembrane Conductance Regulator/genetics*
;
Diarrhea
;
Female
;
Humans
;
Infant
;
Infant, Newborn
;
Male
;
Mutation
;
Respiratory Tract Infections
;
Retrospective Studies
4.Progress of research on the role of CLCNKB gene in classical Bartter syndrome.
Jiaran ZHOU ; Chunli WANG ; Huaying BAO
Chinese Journal of Medical Genetics 2020;37(5):573-577
Bartter syndrome is an inherited metabolic disorder characterized by hypokalemic alkalosis and high rennin-angiotensin-aldosteronism which can occur at all ages but mainly in childhood. Classical Bartter syndrome is caused by loss-of-function variants in the gene encoding basolateral chloride channel ClC-Kb (CLCNKB), which is a common type of Bartter syndrome characterized with diverse clinical manifestations ranging from severe to very mild. This article reviews the function and mechanism of CLCNKB variants in Chinese population and the genotype-phenotype correlation of CLCNKB variants in classical Bartter syndrome.
Asian Continental Ancestry Group
;
Bartter Syndrome
;
genetics
;
pathology
;
Chloride Channels
;
genetics
;
Genetic Association Studies
;
Humans
;
Research
;
trends
5.Genetic analysis of a pedigree affected with Bartter's syndrome.
Ke YANG ; Xiaodong HUO ; Yuwei ZHANG ; Mengting ZHANG ; Yue GAO ; Dong WU ; Guiyu LOU ; Na QI ; Bing ZHANG ; Dan WANG
Chinese Journal of Medical Genetics 2019;36(7):701-703
OBJECTIVE:
To explore the genetic basis for a pedigree affected with Bartter's syndrome (BS).
METHODS:
Panel-based next-generation sequencing (NGS) was carried out to detect mutation in BS-related genes SLC12A1, KCNJ1, BSND and CLCNKB. Sanger sequencing of MAGED2 gene and chromosomal microarray analysis (CMA) were also performed on the patient. Suspected mutation was validated in her family members.
RESULTS:
No pathogenic mutation was detected by NGS, while a 0.152 Mb microdeletion at Xp11.21 (54 834 585-54 986 301) was found in the male fetus, which removed the entire coding region of the MAGED2 gene. His mother was a heterozygous carrier of the deletion. His father and sister did not carry the same deletion.
CONCLUSION
The loss of the MAGED2 gene may underlie the BS in this pedigree.
Adaptor Proteins, Signal Transducing
;
genetics
;
Antigens, Neoplasm
;
genetics
;
Bartter Syndrome
;
genetics
;
Female
;
Genetic Testing
;
Heterozygote
;
Humans
;
Male
;
Mutation
;
Pedigree
;
Sequence Deletion
6.Clinical characterization and diagnosis of cystic fibrosis through exome sequencing in Chinese infants with Bartter-syndrome-like hypokalemia alkalosis.
Liru QIU ; Fengjie YANG ; Yonghua HE ; Huiqing YUAN ; Jianhua ZHOU
Frontiers of Medicine 2018;12(5):550-558
Cystic fibrosis (CF) is a fatal autosomal-recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. CF is characterized by recurrent pulmonary infection with obstructive pulmonary disease. CF is common in the Caucasian population but is rare in the Chinese population. The symptoms of early-stage CF are often untypical and may sometimes manifest as Bartter syndrome (BS)-like hypokalemic alkalosis. Therefore, the ability of doctors to differentiate CF from BS-like hypokalemic alkalosis in Chinese infants is a great challenge in the timely and accurate diagnosis of CF. In China, sporadic CF has not been diagnosed in children younger than three years of age to date. Three infants, who were initially admitted to our hospital over the period of June 2013 to September 2014 with BS-like hypokalemic alkalosis, were diagnosed with CF through exome sequencing and sweat chloride measurement. The compound heterozygous mutations of the CFTR gene were detected in two infants, and a homozygous missense mutation was found in one infant. Among the six identified mutations, two are novel point mutations (c.1526G > C and c.3062C > T) that are possibly pathogenic. The three infants are the youngest Chinese patients to have been diagnosed with sporadic CF at a very early stage. Follow-up examination showed that all of the cases remained symptom-free after early intervention, indicating the potential benefit of very early diagnosis and timely intervention in children with CF. Our results demonstrate the necessity of distinguishing CF from BS in Chinese infants with hypokalemic alkalosis and the significant diagnostic value of powerful exome sequencing for rare genetic diseases. Furthermore, our findings expand the CFTR mutation spectrum associated with CF.
Alkalosis
;
complications
;
Bartter Syndrome
;
China
;
Cystic Fibrosis
;
diagnosis
;
genetics
;
Cystic Fibrosis Transmembrane Conductance Regulator
;
genetics
;
Diagnosis, Differential
;
Exome
;
Female
;
Humans
;
Hypokalemia
;
complications
;
Infant
;
Male
;
Mutation
7.Poor weight gain, recurrent metabolic alkalosis and hypokalemia in a neonate.
Miao QIAN ; Shu-Ping HAN ; Zhang-Bing YU ; Xiao-Hui CHEN
Chinese Journal of Contemporary Pediatrics 2017;19(7):812-815
The study reports a female neonate with a gestational age of 29weeks and a birth weight of 1 210 g. Ten minutes after birth, the neonate was admitted to the hospital due to shortness of breath. Several days after birth, the neonate presented with hyperglycemia, polyuria, and poor weight gain, accompanied by azotemia, hypochloremic metabolic alkalosis, hypokalemia, and hyponatremia. Laboratory examinations showed elevated levels of aldosterone, renin, and angiotensin II. Gene detection revealed SLC12A1 gene mutation. Neonatal Bartter syndrome was thus confirmed. The neonate was treated with sodium and potassium supplements, and was followed up for 8 months. During the follow-up, the mental and neural development of the neonate was almost normal at the corrected age, and regular reexaminations showed slight metabolic alkalosis and almost normal electrolyte levels. For the neonates who have the symptoms of unexplainable polyurine and electrolyte disorders, it is important to examine the levels of aldosterone, renin and angiotensin. A definite diagnosis of neonatal Bartter syndrome can be made based on the presence of SLC12A1 gene mutation.
Acidosis
;
etiology
;
Bartter Syndrome
;
etiology
;
therapy
;
Female
;
Humans
;
Hypokalemia
;
etiology
;
Infant, Newborn
;
Recurrence
;
Weight Gain
8.An Adult Case of Bartter Syndrome Type III Presenting with Proteinuria.
Eun Jung CHA ; Won Min HWANG ; Sung Ro YUN ; Moon Hyang PARK
Journal of Pathology and Translational Medicine 2016;50(2):160-164
Bartter syndrome (BS) I-IV is a rare autosomal recessive disorder affecting salt reabsorption in the thick ascending limb of the loop of Henle. This report highlights clinicopathological findings and genetic studies of classic BS in a 22-year-old female patient who presented with persistent mild proteinuria for 2 years. A renal biopsy demonstrated a mild to moderate increase in the mesangial cells and matrix of most glomeruli, along with marked juxtaglomerular cell hyperplasia. These findings suggested BS associated with mild IgA nephropathy. Focal tubular atrophy, interstitial fibrosis, and lymphocytic infiltration were also observed. A genetic study of the patient and her parents revealed a mutation of the CLCNKB genes. The patient was diagnosed with BS, type III. This case represents an atypical presentation of classic BS in an adult patient. Pathologic findings of renal biopsy combined with genetic analysis and clinicolaboratory findings are important in making an accurate diagnosis.
Adult*
;
Atrophy
;
Bartter Syndrome*
;
Biopsy
;
Diagnosis
;
Extremities
;
Female
;
Fibrosis
;
Glomerulonephritis, IGA
;
Humans
;
Hyperplasia
;
Hypokalemia
;
Loop of Henle
;
Mesangial Cells
;
Parents
;
Proteinuria*
;
Young Adult
9.A novel mutation of CLCNKB in a Korean patient of mixed phenotype of Bartter-Gitelman syndrome.
Hee Won CHO ; Sang Taek LEE ; Heeyeon CHO ; Hae Il CHEONG
Korean Journal of Pediatrics 2016;59(Suppl 1):S103-S106
Bartter syndrome (BS) is an inherited renal tubular disorder characterized by low or normal blood pressure, hypokalemic metabolic alkalosis, and hyperreninemic hyperaldosteronism. Type III BS is caused by loss-of-function mutations in CLCNKB encoding basolateral ClC-Kb. The clinical phenotype of patients with CLCNKB mutations has been known to be highly variable, and cases that are difficult to categorize as type III BS or other hereditary tubulopathies, such as Gitelman syndrome, have been rarely reported. We report a case of a 10-year-old Korean boy with atypical clinical findings caused by a novel CLCNKB mutation. The boy showed intermittent muscle cramps with laboratory findings of hypokalemia, severe hypomagnesemia, and nephrocalcinosis. These findings were not fully compatible with those observed in cases of BS or Gitelman syndrome. The CLCNKB mutation analysis revealed a heterozygous c.139G>A transition in exon 13 [p.Gly(GGG)465Glu(GAG)]. This change is not a known mutation; however, the clinical findings and in silico prediction results indicated that it is the underlying cause of his presentation.
Alkalosis
;
Bartter Syndrome
;
Blood Pressure
;
Child
;
Computer Simulation
;
Exons
;
Gitelman Syndrome
;
Humans
;
Hyperaldosteronism
;
Hypokalemia
;
Male
;
Muscle Cramp
;
Nephrocalcinosis
;
Phenotype*
10.Mutations in SLC12A3 and CLCNKB and Their Correlation with Clinical Phenotype in Patients with Gitelman and Gitelman-like Syndrome.
Jae Wook LEE ; Jeonghwan LEE ; Nam Ju HEO ; Hae Il CHEONG ; Jin Suk HAN
Journal of Korean Medical Science 2016;31(1):47-54
Gitelman's syndrome (GS) is caused by loss-of-function mutations in SLC12A3 and characterized by hypokalemic metabolic alkalosis, hypocalciuria, and hypomagnesemia. Long-term prognosis and the role of gene diagnosis in GS are still unclear. To investigate genotype-phenotype correlation in GS and Gitelman-like syndrome, we enrolled 34 patients who showed hypokalemic metabolic alkalosis without secondary causes. Mutation analysis of SLC12A3 and CLCNKB was performed. Thirty-one patients had mutations in SLC12A3, 5 patients in CLCNKB, and 2 patients in both genes. There was no significant difference between male and female in clinical manifestations at the time of presentation, except for early onset of symptoms in males and more profound hypokalemia in females. We identified 10 novel mutations in SLC12A3 and 4 in CLCNKB. Compared with those with CLCNKB mutations, patients with SLC12A3 mutations were characterized by more consistent hypocalciuria and hypomagnesemia. Patients with 2 mutant SLC12A3 alleles, compared with those with 1 mutant allele, did not have more severe clinical and laboratory findings except for lower plasma magnesium concentrations. Male and female patients did not differ in their requirement for electrolyte replacements. Two patients with concomitant SLC12A3 and CLCNKB mutations had early-onset severe symptoms and showed different response to treatment. Hypocalciuria and hypomagnesemia are useful markers in differentiation of GS and classical Bartter's syndrome. Gender, genotypes or the number of SLC12A3 mutant alleles cannot predict the severity of disease or response to treatment.
Adolescent
;
Adult
;
Alleles
;
Bartter Syndrome/genetics/pathology
;
Chloride Channels/*genetics
;
DNA Mutational Analysis
;
Female
;
Genetic Association Studies
;
Genotype
;
Gitelman Syndrome/*genetics/pathology
;
Humans
;
Hypokalemia/etiology
;
Male
;
Middle Aged
;
Phenotype
;
Polymorphism, Genetic
;
Solute Carrier Family 12, Member 3/genetics
;
Young Adult

Result Analysis
Print
Save
E-mail