1.Baroreflex ActivationTherapy for Heart Failure.
Yi XU ; Yue-Jin YANG ; Jun GUO
Acta Academiae Medicinae Sinicae 2022;44(4):717-721
Heart failure (HF) is the endstage of multiple cardiovascular diseases.Impaired autonomic regulation and sympathetic-parasympathetic imbalance are considered key factors in HF progression.Baroreflex activation therapy (BAT),a novel device-based therapy which stimulates the carotid sinuses and regulates autonomic function,has demonstrated good efficacy in treating HF and improving prognosis.This review summarized the results of the latest relevant studies to provide support for further study of BAT.
Baroreflex/physiology*
;
Heart Failure/therapy*
;
Humans
2.Chronic Intermittent Hypobaric Hypoxia Ameliorates Renal Vascular Hypertension Through Up-regulating NOS in Nucleus Tractus Solitarii.
Na LI ; Yue GUAN ; Yan-Ming TIAN ; Hui-Jie MA ; Xiangjian ZHANG ; Yi ZHANG ; Sheng WANG
Neuroscience Bulletin 2019;35(1):79-90
Chronic intermittent hypobaric hypoxia (CIHH) is known to have an anti-hypertensive effect, which might be related to modulation of the baroreflex in rats with renal vascular hypertension (RVH). In this study, RVH was induced by the 2-kidney-1-clip method (2K1C) in adult male Sprague-Dawley rats. The rats were then treated with hypobaric hypoxia simulating 5000 m altitude for 6 h/day for 28 days. The arterial blood pressure (ABP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were measured before and after microinjection of L-arginine into the nucleus tractus solitarii (NTS) in anesthetized rats. Evoked excitatory postsynaptic currents (eEPSCs) and spontaneous EPSCs (sEPSCs) were recorded in anterogradely-labeled NTS neurons receiving baroreceptor afferents. We measured the protein expression of neuronal nitric oxide synthase (nNOS) and endothelial NOS (eNOS) in the NTS. The results showed that the ABP in RVH rats was significantly lower after CIHH treatment. The inhibition of ABP, HR, and RSNA induced by L-arginine was less in RVH rats than in sham rats, and greater in the CIHH-treated RVH rats than the untreated RVH rats. The eEPSC amplitude in NTS neurons receiving baroreceptor afferents was lower in the RVH rats than in the sham rats and recovered after CIHH. The protein expression of nNOS and eNOS in the NTS was lower in the RVH rats than in the sham rats and this decrease was reversed by CIHH. In short, CIHH treatment decreases ABP in RVH rats via up-regulating NOS expression in the NTS.
Animals
;
Baroreflex
;
physiology
;
Blood Pressure
;
drug effects
;
Hypertension
;
metabolism
;
Hypoxia
;
chemically induced
;
Kidney
;
drug effects
;
metabolism
;
Male
;
Nitric Oxide Synthase Type I
;
drug effects
;
metabolism
;
Rats, Sprague-Dawley
;
Solitary Nucleus
;
metabolism
3.Baroreflex Control of Heart Rate in Mice Overexpressing Human SOD1: Functional Changes in Central and Vagal Efferent Components.
Jin CHEN ; He GU ; Robert D WURSTER ; Zixi CHENG
Neuroscience Bulletin 2019;35(1):91-97
Excessive reactive oxygen species (ROS) (such as the superoxide radical) are commonly associated with cardiac autonomic dysfunctions. Though superoxide dismutase 1 (SOD1) overexpression may protect against ROS damage to the autonomic nervous system, superoxide radical reduction may change normal physiological functions. Previously, we demonstrated that human SOD1 (hSOD1) overexpression does not change baroreflex bradycardia and tachycardia but rather increases aortic depressor nerve activity in response to arterial pressure changes in C57B6SJL-Tg (SOD1)2 Gur/J mice. Since the baroreflex arc includes afferent, central, and efferent components, the objective of this study was to determine whether hSOD1 overexpression alters the central and vagal efferent mediation of heart rate (HR) responses. Our data indicate that SOD1 overexpression decreased the HR responses to vagal efferent nerve stimulation but did not change the HR responses to aortic depressor nerve (ADN) stimulation. Along with the previous study, we suggest that SOD1 overexpression preserves normal baroreflex function but may differentially alter the functions of the ADN, vagal efferents, and central components. While SOD1 overexpression likely enhanced ADN function and the central mediation of bradycardia, it decreased vagal efferent control of HR.
Animals
;
Baroreflex
;
physiology
;
Blood Pressure
;
physiology
;
Bradycardia
;
metabolism
;
Heart Rate
;
physiology
;
Humans
;
Mice, Transgenic
;
Superoxide Dismutase-1
;
metabolism
;
Vagus Nerve
;
metabolism
4.Cellular and Molecular Mechanisms Underlying Arterial Baroreceptor Remodeling in Cardiovascular Diseases and Diabetes.
Huiyin TU ; Dongze ZHANG ; Yu-Long LI
Neuroscience Bulletin 2019;35(1):98-112
Clinical trials and animal experimental studies have demonstrated an association of arterial baroreflex impairment with the prognosis and mortality of cardiovascular diseases and diabetes. As a primary part of the arterial baroreflex arc, the pressure sensitivity of arterial baroreceptors is blunted and involved in arterial baroreflex dysfunction in cardiovascular diseases and diabetes. Changes in the arterial vascular walls, mechanosensitive ion channels, and voltage-gated ion channels contribute to the attenuation of arterial baroreceptor sensitivity. Some endogenous substances (such as angiotensin II and superoxide anion) can modulate these morphological and functional alterations through intracellular signaling pathways in impaired arterial baroreceptors. Arterial baroreceptors can be considered as a potential therapeutic target to improve the prognosis of patients with cardiovascular diseases and diabetes.
Animals
;
Baroreflex
;
physiology
;
Blood Pressure
;
physiology
;
Cardiovascular Diseases
;
metabolism
;
physiopathology
;
Diabetes Mellitus
;
metabolism
;
physiopathology
;
Humans
;
Ion Channels
;
metabolism
;
Pressoreceptors
;
metabolism
5.Role of Baroreflex Sensitivity in Predicting Tilt Training Response in Patients with Neurally Mediated Syncope.
Kwang Jin CHUN ; Hye Ran YIM ; Jungwae PARK ; Seung Jung PARK ; Kyoung Min PARK ; Young Keun ON ; June Soo KIM
Yonsei Medical Journal 2016;57(2):313-320
PURPOSE: An association between baroreflex sensitivity (BRS) and the response to tilt training has not been reported in patients with neurally mediated syncope (NMS). This study sought to investigate the role of BRS in predicting the response to tilt training in patients with NMS. MATERIALS AND METHODS: We analyzed 57 patients who underwent tilt training at our hospital. A responder to tilt training was defined as a patient with three consecutive negative responses to the head-up tilt test (HUT) during tilt training. RESULTS: After tilt training, 52 patients (91.2%) achieved three consecutive negative responses to the HUT. In the supine position before upright posture during the first session of tilt training for responders and non-responders, the mean BRS was 18.17+/-10.09 ms/mm Hg and 7.99+/-5.84 ms/mm Hg (p=0.008), respectively, and the frequency of BRS > or =8.945 ms/mm Hg was 45 (86.5%) and 1 (20.0%; p=0.004), respectively. Age, male gender, frequency of syncopal events before HUT, type of NMS, phase of positive HUT, total number of tilt training sessions, and mean time of tilt training did not differ between the study groups. In the multivariate analysis, BRS <8.945 ms/mm Hg in the supine position (odds ratio 23.10; 95% CI 1.20-443.59; p=0.037) was significantly and independently associated with non-response to tilt training. CONCLUSION: The BRS value in the supine position could be a predictor for determining the response to tilt training in patients with NMS who are being considered for inpatient tilt training.
Adult
;
Aged
;
Baroreflex/*physiology
;
Blood Pressure
;
Female
;
Humans
;
Male
;
Middle Aged
;
Multivariate Analysis
;
Posture
;
Predictive Value of Tests
;
Sensitivity and Specificity
;
Syncope, Vasovagal/*diagnosis/*physiopathology
;
Tilt-Table Test/*methods
;
Triazoles
6.Involvement of cross interaction between central cholinergic and histaminergic systems in the nucleus tractus solitarius in regulating carotid sinus baroreceptor reflex.
Li-Xun HU ; Guo-Xing ZHANG ; Yu-Ying ZHANG ; Hong-Fen ZHAO ; Kang-Ying YU ; Guo-Qing WANG
Acta Physiologica Sinica 2013;65(6):607-615
The carotid sinus baroreceptor reflex (CSR) is an important approach for regulating arterial blood pressure homeostasis instantaneously and physiologically. Activation of the central histaminergic or cholinergic systems results in CSR functional inhibitory resetting. However, it is unclear whether two systems at the nucleus tractus solitarius (NTS) level display cross interaction to regulate the CSR or not. In the present study, the left or right carotid sinus region was isolated from the systemic circulation in Sprague-Dawley rats (sinus nerve was reserved) anesthetized with pentobarbital sodium. Respective intubation was conducted into one side isolated carotid sinus and into the femoral artery for recording the intracarotid sinus pressure (ISP) and mean arterial pressure (MAP) simultaneously with pressure transducers connection in vivo. ISP was set at the level of 0 mmHg to eliminate the effect of initial internal pressure of the carotid sinus on the CSR function. To trigger CSR, the ISP was quickly elevated from 0 mmHg to 280 mmHg in a stepwise manner (40 mmHg) which was added at every step for over 4 s, and then ISP returned to 0 mmHg in similar steps. The original data of ISP and corresponding MAP were fitted to a modified logistic equation with five parameters to obtain the ISP-MAP, ISP-Gain relationship curves and the CSR characteristic parameters, which were statistically compared and analyzed separately. Under the precondition of no influence on the basic levels of the artery blood pressure, the effects and potential regulatory mechanism of preceding microinjection with different cholinoceptor antagonists, the selective cholinergic M1 receptor antagonist, i.e., pirenzepine (PRZ), the M2 receptor antagonist, i.e., methoctramine (MTR) or the N1 receptor antagonist, i.e., hexamethonium (HEX) into the NTS on the changes in function of CSR induced by intracerebroventricular injection (i.c.v.) of histamine (HA) in rats were observed. Meanwhile, the actions and possible modulatory mechanism of preceding microinjection with different histaminergic receptor antagonists, the selective histaminergic H1 receptor antagonist, i.e., chlorpheniramine (CHL) or the H2 receptor antagonist, i.e., cimetidine (CIM) into the NTS on the changes in function of CSR resulted from the i.c.v. cholinesterase inhibitor, physostigmine (PHY) were also examined in order to confirm and to analyze effects of cross interaction between central histaminergic and cholinergic systems on CSR. The main results obtained are as follows. (1) Standalone microinjection of different selective cholinergic receptor antagonists (PRZ, MTR or HEX) or different selective histaminergic receptor antagonists (CHL or CIM) into the NTS with each given dose had no effects on the CSR function and on the basic levels of the artery blood pressure, respectively (P > 0.05). (2) The pretreatment of PRZ or MTR into the NTS with each corresponding dose could attenuate CSR resetting resulted from i.c.v. HA in some degrees, which remarkably moved the posterior half range of ISP-MAP relationship curve downwards (P < 0.05), shifted the middle part of ISP-Gain relationship curve upwards (P < 0.05), and increased reflex parameters such as the MAP range and maximum gain (P < 0.05), but decreased parameters such as saturation pressure and intracarotid sinus pressure at maximum gain (P < 0.05). The catabatic effects of pretreatment with MTR into the NTS on CSR resetting induced by i.c.v. HA were more obvious than those with PRZ (P < 0.05), but pretreatment of HEX with given dose into the NTS had no effects on CSR resetting induced by i.c.v. HA (P > 0.05). (3) The effects of pretreatment of CHL or CIM into the NTS with each corresponding dose on CSR resetting made by i.c.v. PHY were similar to those of pretreatment of PRZ or MTR into the NTS on CSR resetting resulted from i.c.v. HA, and the decreasing effects of pretreatment with CHL into the NTS on CSR resetting induced by i.c.v. PHY were more remarkable than those with CIM (P < 0.05). These findings suggest that CSR resetting resulted from either HA or PHY into the lateral ventricle may partly involve the descending histaminergic or cholinergic pathway from the hypothalamus to NTS, which might evoke a cross activation of the cholinergic system in the NTS, via cholinergic M1 and M2 receptors mediation, especially the M2 receptors showing actions, or trigger another cross activation of the histaminergic system in the NTS, by histaminergic H1 and H2 receptors mediation, especially the H1 receptors displaying effects.
Animals
;
Baroreflex
;
Carotid Sinus
;
physiology
;
Chlorpheniramine
;
pharmacology
;
Cholinergic Antagonists
;
pharmacology
;
Cimetidine
;
pharmacology
;
Histamine
;
pharmacology
;
Pressoreceptors
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Solitary Nucleus
;
physiology
7.Central oxidative stress depresses baroreflex function in spontaneously hypertensive rats.
Chinese Journal of Applied Physiology 2012;28(5):445-448
OBJECTIVETo investigate the effects of central oxidative stress on the baroreflex function and central mechanism responsible for the attenuated baroreflex sensitivity (BRS) in spontaneously hypertensive rats (SHR).
METHODSMale 24-week-old SHR and normal rats were anesthetized with urethane and alpha-chloralose. Intravenous injection of phenylephrine (PE) and sodium nitroprusside (NP) evoked arterial baroreflex. The ratio of change in heart rate (HR) to change in mean aortic pressure (MAP) represented the baroreflex sensitivity (BRS). Alteration in BRS was evaluated before and after intracerebroventricular administration of superoxide dismutase (SOD) mimetic tempol or SOD inhibitor diethyldithiocarbamic acid (DETC).
RESULTSBRS in hypertensive rats was significantly lower than that in normal rats (PE: P < 0.01, NP: P < 0.01). Intracerebroventricular administration of Tempol significantly improved BRS in hypertensive rats (P < 0.05), but not in normal rats. In contrast, DETC decreased BRS to a greater extent in normal group than in hypertension group (P < 0.05). MDA content in hypothalamus of hypertensive rats was higher than that of normal rats (P < 0.01), whereas total antioxidant capacity, total SOD, CuZn-SOD, catalase activity were lower in hypertensive rats than in normal rats (P < 0.05).
CONCLUSIONAttenuated baroreflex function in hypertensive rats is associated with central oxidative stress, which is linked to decreases in antioxidant enzyme activity and antioxidative capacity in the brain.
Animals ; Baroreflex ; physiology ; Central Nervous System ; metabolism ; Male ; Oxidative Stress ; Rats ; Rats, Inbred SHR
8.Facilitative effect of glycine on regulation of baroreflex in the hypothalamic paraventricular nucleus of conscious rats..
Gui-Dong YIN ; Yan-Hua BING ; Xiao-Lei GAO ; Yuan-Zhe JIN ; Qing-Hua JIN
Acta Physiologica Sinica 2009;61(2):155-160
The hypothalamic paraventricular nucleus (PVN) is a central site for integration of the endocrine system and the autonomic nervous system. Despite a number of studies have pointed out the importance of the PVN in the central regulation of cardiovascular functions, the chemical mediators in the PVN responsible for mediating baroreflex are not well understood. In the present study, we used the conscious rats to investigate the possible involvement of glycine (Gly) in PVN in the central regulation of baroreflex induced by intravenous injection of phenylephrine (0.8 mug/0.04 mL, in 3 min). Then, the microdialysis sampling was performed in the PVN and the concentration of Gly in the microdialysate was measured by high performance liquid chromatography (HPLC) combined with electrochemical techniques, and mean arterial pressure (MAP) and heart rate (HR) were recorded simultaneously. Injection of phenylephrine elicited a significant increase (P<0.01) in MAP from the baseline of (99.5+/-14.2) mmHg to the maximum of (149.8+/-19.5) mmHg and a decrease (P<0.01) in HR from the baseline of (400.8+/-33.1) beats/min to the minimum of (273.4+/-40.8) beats/min, respectively. Synchronously, the injection of phenylephrine increased the level of Gly in the microdialysate from the PVN to (162.9+/-27.3)% of the basal level (P<0.05). Perfusion of strychnine (100 mumol/L), an antagonist of Gly receptor, into the PVN enhanced the pressor response and attenuated the bradycardic response during the baroreflex, resulting in a decrease in baroreflex sensitivity (P<0.001). Whereas, the perfusion of Gly (1 mmol/L) into the PVN did not affect the pressor response but enhanced the bradycardic response during the baroreflex, resulting in an increase in baroreflex sensitivity (P<0.001). These results suggest that endogenous Gly in the PVN may act via strychnine-sensitive Gly receptor to produce a facilitative effect on baroreflex.
Animals
;
Baroreflex
;
drug effects
;
Glycine
;
pharmacology
;
Heart Rate
;
Microinjections
;
Paraventricular Hypothalamic Nucleus
;
physiology
;
Phenylephrine
;
pharmacology
;
Rats
9.Effect of antagonism of glutamate receptors in the PVN region on baroreflex in conscious rats.
Gui-yu CUI ; Gui-dong YIN ; Hai-ying JIANG ; Yuan-zhe JIN ; Qing-hua JIN
Chinese Journal of Applied Physiology 2008;24(4):421-425
AIMTo investigate the possible involvement of glutamate(Glu) in the paraventricular nucleus (PVN) in the central regulation of baroreflex.
METHODSThe baroreflex was induced by intravenous injection of phenylephrine in conscious rats, and the extracellular concentration of Glu in the PVN region was measured by microdialysis and high performance liquid chromatography (HPLC) techniques. To determine whether the observed Glu release was involved in the baroreflex, NMDA and non-NMDA receptor antagonists, MK-801 and CNQX, were perfused in the PVN region during baroreflex.
RESULTSDuring baroreflex, the Glu concentration in the PVN region immediately increased to 384.82% +/- 91.77% of basal level (P < 0.01). (2) During baroreflex, direct perfusion of MK-801 and CNQX in the PVN were attenuated the increase of blood pressure and enhanced the decrease of HR (P < 0.01),resulting a significant increase in baroreflex sensitivity (P < 0.01).
CONCLUSIONGlutamate in PVN is involved in central regulation of baroreflex, which may inhibit baroreflex via ionothopic glutamate receptors.
6-Cyano-7-nitroquinoxaline-2,3-dione ; pharmacology ; Animals ; Baroreflex ; drug effects ; physiology ; Dizocilpine Maleate ; pharmacology ; Excitatory Amino Acid Antagonists ; pharmacology ; Male ; Paraventricular Hypothalamic Nucleus ; physiology ; Rats ; Rats, Wistar
10.A receptors in the NTS modulate depression of carotid baroreflex induced by intracerebroventricular injection of histamine in rats.
Guo-Qing WANG ; Jun SONG ; Wan-Ping SUN ; Jin-Hua LI ; Xi-Ping ZHOU
Chinese Journal of Applied Physiology 2007;23(1):57-61
AIMTo investigate the roles of alpha1 and alpha2 receptors in the nucleus tractus solitarius (NTS) in the carotid baroreflex (CBR) resetting induced by the intracerebroventricular injection (ICV) of histamine (HA).
METHODSThe left and right carotid sinus regions were isolated from the systemic circulation in 25 Sprague-Dawley rats anesthetized with pentobarbital sodium. The intracarotid sinus pressure (ISP) was altered in a stepwise manner. ISP-mean arterial pressure (MAP) relationship curve and its characteristic parameters were constructed by fitting to the logistic function with five parameters. The changes in CBR performance induced by ICV HA and the effects of pretreatment with alpha1 or alpha2 receptor antagonist into the NTS on the responses of CBR to HA were examined.
RESULTSICV HA (60 micromol x L(-1) in 5 microl) significantly shifted the ISP-MAP relationship curve upwards (P < 0.05) and moved the middle part of ISP-Gain relationship curve downwards (P < 0.05), and reduced the MAP range and maximum gain (P < 0.05). The pretreatment with phenoxybenzamine (PBZ, a selective antagonist of alpha1 receptor, 3 micromol x L(-1) in 500 nl) or yohimbine (YOH, a selective antagonist of alpha2 receptor, 2.5 micromol x L(-1) in 500 nl) into the NTS could obviously intensify the above-mentioned changes in CBR performance induced by HA, but the intensive effect of PBZ was less remarkable than that of YOH (P < 0.05).
CONCLUSIONThe intracerebroventricular administration of HA results in a rapid resetting of CBR and a decrease in reflex sensitivity, and the functions of alpha1 and alpha2 receptors in the NTS might weaken CBR resetting induced by ICV HA. Furthermore, alpha2 receptor in the NTS might play an more important role in modulating the responses of CHR to HA.
Animals ; Baroreflex ; drug effects ; Blood Pressure ; Carotid Sinus ; drug effects ; Histamine ; administration & dosage ; pharmacology ; Injections, Intraventricular ; Male ; Rats ; Rats, Sprague-Dawley ; Solitary Nucleus ; drug effects ; physiology

Result Analysis
Print
Save
E-mail