1.Comparative analysis of characteristics and functions of exosomes from human induced pluripotent stem cell-derived platelets and apheresis platelets
Weihua HUANG ; Yan ZANG ; Aihua QIN ; Ziyang FENG ; Heshan TANG ; Fei GUO ; Chuyan WU ; Qiu SHEN ; Baohua QIAN ; Haihui GU ; Zhanshan CHA
Chinese Journal of Blood Transfusion 2025;38(9):1154-1161
Objective: To compare the biological characteristics of human induced pluripotent stem cell-derived platelet exosomes (hiPSC-Plt-Exos) with those of conventional apheresis platelet exosomes (Plt-Exos), specifically focusing on their differential abilities to enhance the proliferation and migration of human umbilical cord mesenchymal stem cells (hUC-MSCs). Methods: Exosomes were isolated from hiPSC-derived Plt and apheresis Plt concentrate using size exclusion chromatography. These exosomes were then characterized through nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blotting. Co-culture experiments into hUC-MSCs were conducted with hiPSC-Plt-Exos and apheresis Plt-Exos, respectively. Their effects on the proliferation and migration of hUC-MSCs were assessed via cell proliferation assays and scratch tests. Results: hiPSC-Plt-Exos and apheresis Plt-Exos exhibited comparable particle sizes, morphological features (such as the characteristic cup-shaped structure), and surface markers (including CD9 and HSP70). Notably, hiPSC-Plt-Exos demonstrated a significantly greater ability to enhance the proliferation and migration of hUC-MSCs compared to apheresis Plt-Exos (P<0.05). These differences provide critical comparative data for their application in various clinical contexts. Conclusion: This study establishes a theoretical foundation for developing precise therapeutic strategies based on hiPSC-Plt-Exos. Furthermore, it underscores the necessity of selecting the appropriate type of exosomes according to the specific disease microenvironment to achieve optimal therapeutic outcomes.
2.Establishment and Preliminary Application Analysis of A Multiplex Detection Method for Influenza A and B Virus Antigen Based on Quantum Dot-encoded Microsphere Flow Cytometry Technology
Chengjing XIA ; Baohua LI ; Yanni GUO ; Xiaohe ZHOU ; Runling ZHANG ; Yingbo NIU
Journal of Modern Laboratory Medicine 2024;39(1):126-130
Objective To establish a multiplex assay method for the simultaneous detection of FluA and FluB virus(IBV)antigen based on the flow cytometry(FCM)quantum dot-encoded bead technologies,laying the foundation for the assay of multiple respiratory virus biomarkers.Methods Coupling was performed for FluA and FluB nucleoprotein(NP)monoclonal antibodies using self-made quantum dot-encoded beads,separately.FCM was used to detect known concentrations of FluA and FluB antigens separately and simultaneously,optimize the detection conditions,and establish a joint detection method for FluA and FluB antigens.Compared with the quantitative real-time PCR(qPCR)method,clinical samples were used to evaluate the clinical performance of this joint detection method.Results The joint detection method for FluA and FluB antigens was established,with detection limits of 26.1 pg/ml and 10.7 pg/ml,respectively,and measurement ranges of 15.3~250 000 pg/ml.The joint detection method for clinical sample evaluation was well correlated with the qPCR,with a positive coincidence rate of 57.4%,a negative coincidence rate of 100%,and a total coincidence rate of 71.6%.In addition,the joint detection method was superior to colloidal gold immunochromatographic strip assay commonly used in clinical practice(positive coincidence rate of 56.49%,negative coincidence rate of 99.75%).Conclusion The FCM quantum dot-encoded bead multiplex assay can be used for the joint detection of FluA and FluB antigens,which have a high sensitivity,good specificity and wide detection range.It may lay a good foundation for the multiplex detection of common respiratory viruses,and has clinical application prospects.
3.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
4.Efficacy of different frequencies of modified electroconvulsive therapy in patients with depressive disorder and its effect on cognitive function and functional near infrared spectroscopy
Hong DAI ; Xin ZU ; Lingli GUO ; Baohua SONG
Chinese Journal of Primary Medicine and Pharmacy 2024;31(8):1133-1138
Objective:To investigate the efficacy of different frequencies of modified electroconvulsive therapy in patients with depressive disorder and its effect on cognitive function and functional near infrared spectroscopy.Methods:The clinical data from 60 patients with depressive disorder, admitted to The Third People's Hospital of Huzhou between December 2022 and July 2023, were retrospectively analyzed. This study was designed as a case-control study. These patients were divided into three treatment groups according to different treatment methods: Group 1 ( n = 20), Group 2 ( n = 20), and Group 3 ( n = 20). All patients underwent conventional antidepressant therapy. Additionally, Group 1 received six sessions of modified electroconvulsive therapy, Group 2 received eight sessions, and Group 3 received ten sessions. The treatment duration for all groups was 4 weeks. Comparisons were made among the three groups for pre- and post-treatment scores on the 24-item Hamilton Depression Rating Scale, 14-item Hamilton Anxiety Rating Scale, Clinical Global Impression Scale, Mini-Mental State Examination, Wisconsin Card Sorting Test, Trail Making Test Part A (TMT-A), Trail Making Test Part B (TMT-B), and Digit Symbol Substitution Test. Furthermore, the incidence of adverse reactions during treatment was calculated, and the Treatment Emergent Symptom Scale was used to assess the occurrence of adverse drug reactions. Moreover, functional Near-Infrared Spectroscopy was used before and after treatment to evaluate the cognitive function of patients under the Verbal Fluency Task. Results:At 1, 2, and 4 weeks of treatment, the 24-item Hamilton Depression Rating Scale, 14-item Hamilton Anxiety Rating Scale, and Clinical Global Impression Scale scores of Group 2 and Group 3 were significantly lower than those of Group 1 ( Finter-group = 32.09, Ftime = 54.27, Finteraction = 7.53, all P < 0.05; Finter-group = 38.14, Ftime = 69.33, Finteraction = 8.59, all P < 0.05; Finter-group = 11.22, Ftime = 28.29, Finteraction = 9.14, all P < 0.05). The Mini-Mental State Examination, Wisconsin Card Sorting Test, and Digit Symbol Substitution Test scores of Group 1 and Group 2 were significantly higher than those of Group 3, while Trail Making Test Part A and Trail Making Test Part B scores of Group 1 and Group 2 were significantly lower than those of Group 3 ( Finter-group = 14.20, Ftime = 44.27, Finteraction = 6.24, all P < 0.05; Finter-group = 18.23, Ftime = 67.15, Finteraction = 8.54, all P < 0.05; Finter-group = 9.30, Ftime = 75.16, Finteraction = 9.41, all P < 0.05; Finter-group = 19.47, Ftime = 85.76, Finteraction = 9.33, all P < 0.05; Finter-group = 22.26, Ftime = 46.37, Finteraction = 6.52, all P < 0.05). There was no significant difference in the incidence of adverse reactions among the three groups ( Finter-group = 3.03, Ftime = 8.36, Finteraction = 1.25, all P > 0.05). After 4 weeks of treatment, the number of Verbal Fluency Task words and oxy-Hb level in Group 2 were significantly higher compared with those in Group 1 and Group 3 ( F = 29.71, 198.57, both P < 0.05). Conclusion:Modified electroconvulsive therapy is highly effective and safe in treating depressive disorders in patients. Eight sessions of modified electroconvulsive therapy administered within 4 weeks have been shown to exhibit better clinical efficacy and lead to greater improvements in cognitive function and functional near-infrared spectroscopy measurements compared with six or ten sessions of treatment.
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
6.Construction of a predictive model for postpartum hemorrhage in parturients undergoing vaginal delivery with a second child
Linlin CAO ; Caiyun WANG ; Baohua LI ; Shenglian NI ; Jie LU ; Luyan LIU ; Xiaoxiao WANG ; Zhichao GUO
Chinese Journal of Modern Nursing 2024;30(7):899-905
Objective:To explore the risk factors of postpartum hemorrhage in parturients undergoing vaginal delivery with a second child and establish a risk prediction model.Methods:Using the convenient sampling method, a total of 2 500 parturients undergoing vaginal delivery with a second child who underwent regular prenatal examinations at Peking University Third Hospital from July 2019 to March 2023 were selected as the research objects. According to the amount of blood loss, parturients with blood loss greater than or equal to 500 ml within 24 hours after delivery were selected as the case group ( n=278), while parturients with blood loss less than 500 ml within 24 hours after delivery in the same period were selected as the control group ( n=2 222). Univariate analysis and binomial Logistic regression were used to analyze the influencing factors of postpartum hemorrhage in parturients with vaginal delivery with a second child. Based on the selected risk factors, a nomogram prediction model was established using R software, and the consistency of the model was tested. Results:The incidence of postpartum hemorrhage in 2 500 parturients undergoing vaginal delivery with a second child was 11.12% (278/2 500). Binomial Logistic regression analysis showed that in in vitro fertilization-embryo transfer, pre-delivery body mass index, lateral perineal incision, neonatal weight, placenta previa, placenta implantation and manual extraction of placenta were the influencing factors for postpartum hemorrhage in parturients undergoing vaginal delivery with a second child ( P<0.05). According to the influencing factors, a nomogram model was established to predict the probability of postpartum hemorrhage in women who gave birth to a second child. The C- index of the prediction model was 0.706, the area under the receiver operating characteristic curve was 0.706, and the χ 2 value of the Hosmer-Lemeshow goodness-of-fit test was 7.720 ( P=0.461) . Conclusions:In vitro fertilization embryo transfer, pre-delivery body mass index, perineal lateral resection, neonatal weight, placenta previa, placental implantation and manual extraction of placenta are risk factors for postpartum hemorrhage in parturients undergoing vaginal delivery for a second child. The prediction model constructed based on risk factors has certain accuracy and clinical value for predicting postpartum hemorrhage in parturients with vaginal delivery of a second child.
7.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
8.Interpretation for group standard of Management Norms for Human Caring of Outpatients
Shujie GUO ; Baoyun SONG ; Hongmei ZHANG ; Yilan LIU ; Yanming DING ; Zuyu TANG ; Hong LI ; Huiling LI ; Hongzhen XIE ; Yinglan LI ; Baohua LI ; Ruiying YU ; Chuang LI ; Haixin ZHANG ; Yanjin LIU ; Pingfan ZHAO ; Huiling CHEN ; Chunyan GUAN ; Bing SONG ; Guohua LIU
Chinese Journal of Hospital Administration 2024;40(6):419-425
Outpatient humanistic care refered to providing a full process of caring medical services to outpatients. In order to standardize the human caring services for outpatients in medical institutions, promote the comprehensive service level of outpatient services, and improve the patient′s medical experience, Chinese Association for Life Care issued the group standard of Management Norms for Human caring of Outpatients in April 2023. This standard clarified the relevant terms and definitions of human caring for outpatients, specified the basic requirements for human caring, the humanistic quality and care responsibilities of outpatient staff, the outpatient care environment and facilities, the outpatient care process and measures, and quality management. It designed standardized and personalized full process care service norms, providing references for medical institutions at all levels to promote the development of human caring for outpatients.
9.Clinical blood transfusion quality management in Shanghai
Heshan TANG ; Aihua QIN ; Weihua HUANG ; Zhanshan ZHA ; Fei GUO ; Ziyang FENG ; Baohua QIAN ; Yan ZANG
Chinese Journal of Blood Transfusion 2023;36(12):1154-1158
【Objective】 To analyze the data of clinical blood transfusion quality control supervision in Shanghai, so as to provide reference for the improvement of clinical blood transfusion quality management in hospitals at all levels. 【Methods】 The data of clinical blood transfusion quality control supervision in hospitals at all levels from 2016 to 2021 were retrospectively analyzed to obtain the characteristics and indicators in the quality management. 【Results】 The overall level of clinical blood transfusion quality management in Shanghai steadily improved from 2016 to 2021 (F=3.82, P<0.01), and the management level of different hospitals varied significantly (F=9.00, P<0.01). In 2021, the full compliance rates of housing facilities, instruments and equipment, diagnostic reports and medical record writing among the third-level indicators of clinical blood transfusion quality management in hospitals at all levels were as follows: 86.49%(32/37), 100% (37/37)and 43.24%(16/37) for tertiary comprehensive hospitals; 61.11%(11/18), 88.89%(16/18) and 50.00% (9/18)for tertiary specialized hospitals; 60.87%(14/23), 78.26%(18/23)and 47.83%(11/23) for secondary comprehensive hospitals, ; 60.00%(9/15), 66.67%(10/15), 40.00%(6/15) for secondary specialized hospitals; 52.38%(11/21), 38.10%(8/21), 42.86%(9/21) for private hospitals. 【Conclusion】 The characteristics of clinical blood transfusion quality management in hospitals at all levels in Shanghai differed significantly, with different strengths and weaknesses. Hospitals should improve blood transfusion management in terms of housing facilities, personnel management, system process as well as diagnostic reports and medical record writing, in order to enhance the clinical blood transfusion quality management.
10.BRICS report of 2021: The distribution and antimicrobial resistance profile of clinical bacterial isolates from blood stream infections in China
Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Jiliang WANG ; Hui DING ; Haifeng MAO ; Yizheng ZHOU ; Yan JIN ; Yongyun LIU ; Yan GENG ; Yuanyuan DAI ; Hong LU ; Peng ZHANG ; Ying HUANG ; Donghong HUANG ; Xinhua QIANG ; Jilu SHEN ; Hongyun XU ; Fenghong CHEN ; Guolin LIAO ; Dan LIU ; Haixin DONG ; Jiangqin SONG ; Lu WANG ; Junmin CAO ; Lixia ZHANG ; Yanhong LI ; Dijing SONG ; Zhuo LI ; Youdong YIN ; Donghua LIU ; Liang GUO ; Qiang LIU ; Baohua ZHANG ; Rong XU ; Yinqiao DONG ; Shuyan HU ; Kunpeng LIANG ; Bo QUAN ; Lin ZHENG ; Ling MENG ; Liang LUAN ; Jinhua LIANG ; Weiping LIU ; Xuefei HU ; Pengpeng TIAN ; Xiaoping YAN ; Aiyun LI ; Jian LI ; Xiusan XIA ; Xiaoyan QI ; Dengyan QIAO ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2023;16(1):33-47
Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical bacterial isolates from bloodstream infections in China in 2021.Methods:The clinical bacterial strains isolated from blood culture from member hospitals of Blood Bacterial Resistant Investigation Collaborative System (BRICS) were collected during January 2021 to December 2021. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical Laboratory Standards Institute (CLSI). WHONET 5.6 was used to analyze data.Results:During the study period, 11 013 bacterial strains were collected from 51 hospitals, of which 2 782 (25.3%) were Gram-positive bacteria and 8 231 (74.7%) were Gram-negative bacteria. The top 10 bacterial species were Escherichia coli (37.6%), Klebsiella pneumoniae (18.9%), Staphylococcus aureus (9.8%), coagulase-negative Staphylococci (6.3%), Pseudomonas aeruginosa (3.6%), Enterococcus faecium (3.6%), Acinetobacter baumannii (2.8%), Enterococcus faecalis (2.7%), Enterobacter cloacae (2.5%) and Klebsiella spp (2.1%). The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus aureus were 25.3% and 76.8%, respectively. No glycopeptide- and daptomycin-resistant Staphylococci was detected; more than 95.0% of Staphylococcus aureus were sensitive to ceftobiprole. No vancomycin-resistant Enterococci strains were detected. The rates of extended spectrum B-lactamase (ESBL)-producing isolated in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis were 49.6%, 25.5% and 39.0%, respectively. The prevalence rates of carbapenem-resistance in Escherichia coli and Klebsiella pneumoniae were 2.2% and 15.8%, respectively; 7.9% of carbapenem-resistant Klebsiella pneumoniae was resistant to ceftazidime/avibactam combination. Ceftobiprole demonstrated excellent activity against non-ESBL-producing Escherichia coli and Klebsiella pneumoniae. Aztreonam/avibactam was highly active against carbapenem-resistant Escherichia coli and Klebsiella pneumoniae. The prevalence rate of carbapenem-resistance in Acinetobacter baumannii was 60.0%, while polymyxin and tigecycline showed good activity against Acinetobacter baumannii (5.5% and 4.5%). The prevalence of carbapenem-resistance in Pseudomonas aeruginosa was 18.9%. Conclusions:The BRICS surveillance results in 2021 shows that the main pathogens of blood stream infection in China are gram-negative bacteria, in which Escherichia coli is the most common. The MRSA incidence shows a further decreasing trend in China and the overall prevalence of vancomycin-resistant Enterococci is low. The prevalence of Carbapenem-resistant Klebsiella pneumoniae is still on a high level, but the trend is downwards.

Result Analysis
Print
Save
E-mail