1.Rapid Identification of Different Parts of Nardostachys jatamansi Based on HS-SPME-GC-MS and Ultra-fast Gas Phase Electronic Nose
Tao WANG ; Xiaoqin ZHAO ; Yang WEN ; Momeimei QU ; Min LI ; Jing WEI ; Xiaoming BAO ; Ying LI ; Yuan LIU ; Xiao LUO ; Wenbing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):182-191
ObjectiveTo establish a model that can quickly identify the aroma components in different parts of Nardostachys jatamansi, so as to provide a quality control basis for the market circulation and clinical use of N. jatamansi. MethodsHeadspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) combined with Smart aroma database and National Institute of Standards and Technology(NIST) database were used to characterize the aroma components in different parts of N. jatamansi, and the aroma components were quantified according to relative response factor(RRF) and three internal standards, and the markers of aroma differences in different parts of N. jatamansi were identified by orthogonal partial least squares-discriminant analysis(OPLS-DA) and cluster thermal analysis based on variable importance in the projection(VIP) value >1 and P<0.01. The odor data of different parts of N. jatamansi were collected by Heracles Ⅱ Neo ultra-fast gas phase electronic nose, and the correlation between compound types of aroma components collected by the ultra-fast gas phase electronic nose and the detection results of HS-SPME-GC-MS was investigated by drawing odor fingerprints and odor response radargrams. Chromatographic peak information with distinguishing ability≥0.700 and peak area≥200 was selected as sensor data, and the rapid identification model of different parts of N. jatamansi was established by principal component analysis(PCA), discriminant factor alysis(DFA), soft independent modeling of class analogies(SIMCA) and statistical quality control analysis(SQCA). ResultsThe HS-SPME-GC-MS results showed that there were 28 common components in the underground and aboveground parts of N. jatamansi, of which 22 could be quantified and 12 significantly different components were screened out. Among these 12 components, the contents of five components(ethyl isovalerate, 2-pentylfuran, benzyl alcohol, nonanal and glacial acetic acid,) in the aboveground part of N. jatamansi were significantly higher than those in the underground part(P<0.01), the contents of β-ionone, patchouli alcohol, α-caryophyllene, linalyl butyrate, valencene, 1,8-cineole and p-cymene in the underground part of N. jatamansi were significantly higher than those in the aboveground part(P<0.01). Heracles Ⅱ Neo electronic nose results showed that the PCA discrimination index of the underground and aboveground parts of N. jatamansi was 82, and the contribution rates of the principal component factors were 99.94% and 99.89% when 2 and 3 principal components were extracted, respectively. The contribution rate of the discriminant factor 1 of the DFA model constructed on the basis of PCA was 100%, the validation score of the SIMCA model for discrimination of the two parts was 99, and SQCA could clearly distinguish different parts of N. jatamansi. ConclusionHS-SPME-GC-MS can clarify the differential markers of underground and aboveground parts of N. jatamansi. The four analytical models provided by Heracles Ⅱ Neo electronic nose(PCA, DFA, SIMCA and SQCA) can realize the rapid identification of different parts of N. jatamansi. Combining the two results, it is speculated that terpenes and carboxylic acids may be the main factors contributing to the difference in aroma between the underground and aboveground parts of N. jatamansi.
2.Structure-activity Omics of Traditional Chinese Medicine: A Case Study of Anti-inflammatory and Analgesic Effect of Qizhi Weitong Granules
Xiansheng MENG ; Ying ZHENG ; Ying MENG ; Bing QI ; Sicong LIU ; Xi LUO ; Xinpeng QIN ; Yongrui BAO ; Shuai WANG ; Tianjiao LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(15):129-135
The complex chemical composition and limited research ideas of traditional Chinese medicine (TCM) have led to the unclear material basis and mechanism of the medicinal effects, which is a common problem hindering the modernization of TCM in China. The introduction of computer virtual technology has provided a new perspective for TCM research. In this study, we established the research method of structure-activity omics to study the relationships between the structures and effects of different compounds in TCM based on the chemical structures of TCM components and to analyze and predict the material basis and multitarget synergistic mechanism of TCM. Furthermore, a structure-activity omics study was carried out with the anti-inflammatory and analgesic effects of Qizhi Weitong granules as an example. This study provides support for screening the pharmacodynamic components and analyzing the active ingredients of TCM and gives insights into the research on the material basis and mechanism of compound efficacy and the development of lead compounds of TCM, thus promoting the modern research and the innovative development of TCM.
3.Structure-activity Omics on Anti-inflammatory and Analgesic Effect of Bupleuri Radix in Qizhi Weitong Granules
Xi LUO ; Bing QI ; Ying MENG ; Xinpeng QIN ; Yongrui BAO ; Tianjiao LI ; Liang WANG ; Shuai WANG ; Xiansheng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(15):146-153
ObjectiveTo identify the pharmacodynamic substances for the anti-inflammatory and analgesic effects of Bupleuri Radix by structure-activity omics. MethodA mouse model of pain was established with formaldehyde to examine the anti-inflammatory and analgesic effects of saikosaponins in vivo. The core targets of the active components in Bupleurum Radix for the anti-inflammatory and analgesic effects were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Online Mendelian Inheritance in Man (OMIM), and Search Tool for Recurring Instances of Neighbouring Genes (STRING). The key core targets with high binding affinity were screened based on the comprehensive score in the molecular docking between different types of saikosaponins and core targets. The structure-activity relationship was discussed and analyzed based on the binding of compounds to pharmacodynamic targets. ResultSaikosaponins alleviated the foot swelling induced by formaldehyde and reduced the content of prostaglandin E2 (PGE2) in the mouse model, showcasing a significant inhibitory effect on the inflammatory pain caused by PGE2. Nine components and 39 targets of saikosaponins, as well as 3 074 targets of anti-inflammatory and analgesic effects were screened out, and 22 common targets shared by saikosaponins and the effects were obtained as the direct targets. The protein-protein interaction (PPI) analysis showed that the main active components of Bupleurum Radix were saikosaponins a, b1, b2, b3, c, d, e, f, and v, and the key targets were fms-related receptor tyrosine kinase 1 (FLT1), kinase insert domain receptor (KDR), fibroblast growth factor 2 (FGF2), vascular endothelial growth factor A (VEGFA), and signal transducer and activator of transcription 3 (STAT3). Molecular docking between saikosaponins and the top 5 targets with high degrees in PPI network analysis revealed 25 highly active docks, including 6 docks with scores of 5-6 and 18 docks with scores above 6. ConclusionThis study adopted structural-activity omics to analyze the material basis for the anti-inflammatory and analgesic effects of Bupleuri Radix in vivo, providing new ideas and methods for identifying the pharmacodynamic substances in traditional Chinese medicine.
4.Structure-activity Omics on Anti-inflammatory and Analgesic Effect of Cyperi Rhizoma in Qizhi Weitong Granules
Ying ZHENG ; Sicong LIU ; Xi LUO ; Bing QI ; Shuai WANG ; Yongrui BAO ; Tianjiao LI ; Liang WANG ; Dong YAO ; Xiansheng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(21):153-160
ObjectiveTo elucidate the pharmacodynamic substances responsible for the anti-inflammatory and analgesic effects of Cyperi Rhizoma by structure-activity omics. MethodOn the basis of the previous in vitro efficacy study by our research group, this study explored the in vivo efficacy of the flavonoids in Cyperi Rhizoma. The flavonoids in Cyperi Rhizoma and their targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), PharmMapper, Swiss TargetPrediction, and available articles. The targets of the anti-inflammatory and analgesic effects were collected from DisGeNET and Online Mendelian Inheritance in Man (OMIM). The common targets shared by flavonoids and the effects were selected as the direct targets of flavonoids endowing Cyperi Rhizoma with anti-inflammatory and analgesic effects, and protein-protein interaction (PPI) network of the core targets was constructed. The method of structure-activity omics was employed to correlate the structure and efficacy of one or more classes of chemical components in Cyperi Rhizoma with the targets as a bridge. The components were classified according to structure. Molecular docking of components to core targets was carried out via SYBYL-X 2.1.1, PyMol, and Discovery Studio 4.5 visualizer. Two targets with the highest binding affinity were selected to explore the relationship between compound structures and targets. ResultThe flavonoids in Cyperi Rhizoma exerted anti-inflammatory and analgesic effects on the mouse model of pain induced by formaldehyde. Eighteen components and 115 direct targets were screened out, and the core targets with high activities were protein kinase B1 (Akt1), interleukin-1β (IL-1β), cellular tumor antigen p53 (TP53), prostaglandin-endoperoxide synthase 2 (PTGS2), and matrix metalloproteinase-9 (MMP-9). According to the structures, the flavonoids in Cyperi Rhizoma were classified into bioflavonoids, flavonols, flavones, and flavanes. The molecular docking results showed that flavonoids of Cyperi Rhizoma had the highest binding affinity to TP53 and PTGS2. The results of structure-activity omics showed that bioflavonoids represented the best binding structure to the targets, while their polyhydroxyl etherification resulted in a significant decrease in the binding affinity to PTGS2. Glycosides had higher binding affinity to PTGS2. The introduction of the long-chain hydrocarbon group to the A ring of flavonols facilitated the binding to TP53, while the change of B ring substituents was not the main factor affecting the binding affinity. The 3,4-dihydroxyl flavane outperformed 3-hydroxyl flavane in the binding to TP53, while the two compounds showed similar binding affinity to PTGS2. ConclusionThe method of structure-activity omics was used to analyze the material basis for the anti-inflammatory and analgesic effects of flavonoids in Cyperi Rhizoma. Structure-activity omics provides new ideas for revealing the pharmacodynamic substances of traditional Chinese medicine.
5.Structure-activity Omics on Anti-inflammatory and Analgesic Effect of Paeoniae Radix Alba in Qizhi Weitong Granules
Bing QI ; Xi LUO ; Ying ZHENG ; Ying MENG ; Shuai WANG ; Yongrui BAO ; Tianjiao LI ; Ling HAN ; Xinying SHU ; Xiansheng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(21):169-175
ObjectiveTo elucidate the active compounds for the anti-inflammatory and analgesic effects of Paeoniae Radix Alba from structure-activity omics. MethodOn the basis of the previous in vitro efficacy study by our research group, a mouse model of foot swelling was induced by methyl aldehyde and used to study the anti-inflammatory and analgesic effects of total glycosides of Paeoniae Radix Alba in vivo. The core targets of the active compounds for the anti-inflammatory and analgesic effects of Paeoniae Radix Alba were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Online Mendelian Inheritance in Man (OMIM), and Search Tool for Recurring Instances of Neighbouring Genes (STRING). Molecular docking was conducted for the total glucosides of Paeoniae Radix Alba with the core targets, and the key core targets with high binding affinity were screened out according to the comprehensive score of each target and active structure. The structure-activity relationship was analyzed with targets as a bridge through the combination of compound structures and pharmacological effects. ResultThe total glucosides of Paeoniae Radix Alba had good anti-inflammatory and analgesic effects in vivo. The core targets of 23 active components of Paeoniae Radix Alba were epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), vascular endothelial growth factor A (VEGFA), cellular tumor antigen p53 (TP53), and proto-oncogene transcription factor (JUN). According to the structure of the parent nucleus, there were 16 pinane monoterpene glycosides, 4 pinene monoterpene glycosides, 2 monoterpene lactone glycosides, and 1 monoterpene ketone. The key core targets screened out by molecular docking were EGFR and STAT3. The structure-activity analysis of the active compound structures and the key core targets showed that the introduction of ketone group and benzene ring group on the parent nucleus affected the binding activity. ConclusionThis study analyzed the material basis for the anti-inflammatory and analgesic effects of total glycosides of Paeoniae Radix Alba from structure-activity omics, providing new ideas and methods for revealing the pharmacodynamic substances in traditional Chinese medicine.
6.Clinical characteristics and all-cause mortality influencing factors of 176 patients with Keshan disease
Shujuan LI ; Ying HONG ; Jianzhong BAO ; Rong LUO ; Huihui MA ; Hongmei ZHANG ; Wei CAI ; Feng LI ; Jinshu LI ; Hui HUANG ; Mingjiang LIU ; Anwei WANG ; Ningbo HUANG ; Xiaoping LI
Chinese Journal of Endemiology 2024;43(6):482-486
Objective:To analyze the clinical characteristics and all-cause mortality influencing factors of patients with Keshan disease.Methods:Clinical data of patients with Keshan disease from Keshan disease areas in Sichuan Province and Yunnan Province were collected and retrospectively analyzed for clinical characteristics and survival status during regular follow-up. According to the survival status of patients, the survey subjects were divided into a survival group and a death group. All-cause mortality (referring to the death caused by various reasons throughout the follow-up period) was used as the study endpoint. Kaplan-Meier (K-M) survival curve analysis and log-rank χ 2 test were performed, univariate and multivariate Cox regression analysis were used for all-cause mortality factor analysis. Results:A total of 176 patients with Keshan disease were collected, including 92 cases in Sichuan Province and 84 cases in Yunnan Province. Among all the patients, there were 105 males, accounting for 59.66%, and 71 females, accounting for 40.34%. The age was (53.89 ± 13.19) years old. Thirty-five cases died from all causes, with a mortality rate of 19.89%. There were significant differences in age ( t = 2.09, P = 0.038), New York Heart Association (NYHA) cardiac function grading (χ 2 = 14.62, P < 0.001) and ventricular premature contraction (χ 2 = 6.82, P = 0.009) between the survival group and the death group. K-M survival curve analysis showed that patients with Keshan disease complicated by premature ventricular contraction and high NYHA cardiac function grading (Ⅲ and Ⅳ) had higher all-cause mortality (log-rank χ 2 = 8.72, 22.49, P < 0.05). Univariate Cox regression analysis showed that NYHA cardiac function grading and ventricular premature contraction ( HR = 3.09, 2.71, P < 0.05) were predictive influencing factors for all-cause mortality in patients with Keshan disease. Multivariate Cox regression analysis showed that NYHA cardiac function grading ( HR = 6.57, P = 0.002) and ventricular premature contraction ( HR = 2.98, P = 0.050) were independent factors for all-cause mortality in patients with Keshan disease. Conclusions:Among 176 patients with Keshan disease, the number of patients with poor cardiac function (NYHA cardiac function grading Ⅲ and Ⅳ) and arrhythmia is high. NYHA cardiac function grading and ventricular premature contractions are independent influencing factors for all-cause mortality in patients with Keshan disease.
7.Main components from cultivated and wild Nardostachyos Radix et Rhizoma by LC-MS and GC-MS.
Ying LI ; Hai-Rong ZHONG ; Ri-Luo FENG ; Tao WANG ; Jiang LUO ; Zheng-Ming YANG ; Chen CHEN ; Xin-Jia YAN ; Xiao-Ming BAO ; Wen-Bing LI ; Yuan LIU
China Journal of Chinese Materia Medica 2023;48(5):1218-1228
In this study, ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry(UPLC-Q-TOF-MS) and gas chromatography-mass spectrometry(GC-MS) were combined with non-targeted metabonomic analysis based on multivariate statistics analysis, and the content of five indicative components in nardosinone was determined and compared by UPLC. The main chemical components of Nardostachyos Radix et Rhizoma with imitative wild cultivation and wild Nardostachyos Radix et Rhizoma were comprehensively analyzed. The results of multivariate statistical analysis based on liquid chromatography-mass spectrometry(LC-MS) and GC-MS were consistent. G1 and G2 of the imitative wild cultivation group and G8-G19 of the wild group were clustered into category 1, while G7 of the wild group and G3-G6 of the imitative wild cultivation group were clustered into category 2. After removing the outlier data of G1, G2, and G7, G3-G6 of the imitative wild cultivation group were clustered into one category, and G8-G19 of the wild group were clustered into the other category. Twenty-six chemical components were identified according to the positive and negative ion modes detected by LC-MS. The content of five indicative components(VIP>1.5) was determined using UPLC, revealing that chlorogenic acid, isochlorogenic acid A, isochlorogenic acid C, linarin, nardosinone, and total content in the imitative wild cultivation group were 1.85, 1.52, 1.26, 0.90, 2.93, and 2.56 times those in the wild group, respectively. OPLS-DA based on GC-MS obtained 10 diffe-rential peaks. Among them, the relative content of α-humulene and aristolene in the imitative wild cultivation group were extremely significantly(P<0.01) and significantly(P<0.05) higher than that in the wild group, while the relative content of 7 components such as 5,6-epoxy-3-hydroxy-7-megastigmen-9-one, γ-eudesmol, and juniper camphor and 12-isopropyl-1,5,9-trimethyl-4,8,13-cyclotetrade-catriene-1,3-diol was extremely significantly(P<0.01) and significantly(P<0.05) lower than that in the wild group, respectively. Therefore, the main chemical components of the imitative wild cultivation group and wild group were basically the same. However, the content of non-volatile components in the imitative wild cultivation group was higher than that in the wild group, and the content of some volatile components was opposite. This study provides scientific data for the comprehensive evaluation of the quality of Nardostachyos Radix et Rhizoma with imitative wild cultivation and wild Nardostachyos Radix et Rhizoma.
Gas Chromatography-Mass Spectrometry
;
Chromatography, Liquid
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal/chemistry*
;
Tandem Mass Spectrometry
9.Construction of multi-dimensional value evaluation index system of intraocular lens
Bao-Ying TAN ; Ai-Ling LIN ; Huang-Ying SUN ; Xin PENG ; Chuan-Chao LUO ; Jian-Wei XUAN
Chinese Medical Equipment Journal 2023;44(11):83-89
Objective To develop two multi-dimensional value evaluation index systems for intraocular lens(IOL)to assist decision makers in selecting appropriate IOLs.Methods IOL value assessment indexes were determined preliminarily through literature research and expert consultation,and the weights of the indexes were calculated through hierarchical analysis method and then ranked to form two evaluation index systems.Results Two multi-dimensional value evaluation index systems were constructed for monofocal and refractive IOLs respectively,which both contained 3 first-level indicators and 13 second-level indicators;the evaluation index system for monofocal IOL involved in 26 third-level indicators,and the other for refractive IOL had 33 third-level indicators.The three first-level indicators of the two systems were ranked by weight as clinical dimension,economic dimension and institutional dimension.The monofocal IOL evaluation index system had product performance being the second-level indicator with the highest weight,and the top three third-level indicators with the highest weights being lens capsule biocompatibility,risk of intraocular lens damage during implantation and range of applicable populations;the refractive IOL evaluation index system had clinical efficacy(vision)being the second-level indicator with the highest weight,and the top three third-level indicators with the highest weights being distant vision,(astigmatism)rotational stability/postoperative axial rotation and near vision.Conclusion The multi-dimensional value evaluation index systems developed provide references for comprehensive value evaluation of IOLs.[Chinese Medical Equipment Journal,2023,44(11):83-89]
10.Mechanism of Gegen Qinliantang against Vulnerable Plaque of Atherosclerosis: Based on Macrophage Pyroptosis Mediated by NF-κB/NLRP3/Caspase-1 Pathway
Yi ZHENG ; He GUO ; Yong-rui BAO ; Shuai WANG ; Tian-jiao LI ; Xi LUO ; Huan ZHANG ; Fei NI ; Ying-zhu DUAN ; Ying ZHANG ; Rui YU ; Xian-sheng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2022;28(11):70-78
ObjectiveTo explore the effect of Gegen Qinliantang (GQL) on vulnerable plaque of atherosclerosis based on the macrophage pyroptosis mediated by nuclear factor (NF)-κB/NOD-like receptor protein 3 (NLRP3)/cysteine-aspartic acid protease (Caspase)-1 pathway. MethodA total of 12 normal C57BL/6CNC mice were used as the control group, and 60 ApoE-/- mice of the same line were randomized into 5 groups: model group, low-dose, medium-dose, and high-dose GQL groups (GQL-D, GQL-Z, GQL-G groups, respectively), and western medicine group. The control group and model group were given (ig) equal volume sterile distilled, and GQL-D, GQL-Z, GQL-G and western medicine groups received (ig) corresponding concentration of drugs for 8 weeks. Aortic plaques were observed based on hematoxylin and eosin (HE) staining. Serum levels of interleukin (IL)-1β and IL-18 were detected by enzyme-linked immunosorbent assay (ELISA), protein levels of macrophage mannose receptor (CD206)/apoptosis-associated speck-like protein containing a CARD (ASC) and CD206/NLRP3 by double-labeling immunofluorescence, and C-terminal gasdermin D (GSDMD), N-terminal GSDMD, NLRP3, pro-cysteinyl aspartate specific proteinase 1 (pro-Caspase-1) and NF-κB p65 by Western blot. ResultCompared with the control group, model group demonstrated serious pathological changes, rise of the levels of serum IL-1β and IL-18 and tissue ASC, NLRP3, C-terminal GSDMD, N-terminal GSDMD, pro-Caspase-1, and NF-κB p65, and decrease of CD206 level (P<0.05). As compared with model group, the administration groups showed alleviation of the lesions in aortic wall, decrease in levels of serum IL-1β and IL-18 and tissue ASC, NLRP3, C-terminal GSDMD, N-terminal GSDMD, pro-Caspase-1, and NF-κB p65, and rise of CD206 level, with significant difference between some groups (P<0.05). ConclusionGegen Qinliantang alleviates vulnerable plaque of atherosclerosis by regulating NF-κB/NLRP3/Caspase-1 pathway and further relieving macrophage pyroptosis.

Result Analysis
Print
Save
E-mail