1.Mechanism of imperatorin in ameliorating doxorubicin resistance of breast cancer based on transcriptomics
Yiting LI ; Wei DONG ; Xinli LIANG ; Hu WANG ; Yumei QIU ; Xiaoyun DING ; Hao ZHANG ; Huiyun BAO ; Xianxi LI ; Xilan TANG
China Pharmacy 2025;36(5):529-534
OBJECTIVE To investigate the ameliorative effect and potential mechanism of imperatorin (IMP) on doxorubicin (DOX) resistance in breast cancer. METHODS The effects of maximum non-toxic concentration (100 μg/mL) of IMP combined with different concentrations of DOX (12.5, 25, 50, 75, 100 μg/mL) on the proliferation of MCF-7/DOX cells were determined by MTT method. MCF-7/DOX cells were divided into blank control group (1‰ dimethyl sulfoxide), DOX group (50 μg/mL), IMP+DOX group (100 μg/mL IMP+50 μg/mL DOX) and IMP group (100 μg/mL). mRNA and protein expressions of multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 1 in each group were measured. The relevant pathways and targets involved in the improvement of DOX resistance in breast cancer cells by IMP were screened and validated by using transcriptome sequencing technology, along with gene ontology (GO) enrichment analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. RESULTS Compared with DOX alone, the combination of IMP and DOX reduced the half inhibitory concentration of DOX on MCF-7/DOX cells from 81.965 μg/mL to 43.170 μg/mL, the reverse fold was 1.90, and the mRNA expression of MDR1 was significantly down-regulated (P<0.05). The results of GO enrichment analyses and KEGG pathway enrichment analyses indicated that the reversal of DOX resistance in breast cancer by IMP was mainly associated with the regulation of biological processes such as detoxification, multiple biological processes, and cell killing. The main pathway involved was the p53 signaling pathway, and the key targets mainly included constitutively photomorphogenic protein 1 (COP1), cyclin E1 (CCNE1), growth arrest and DNA damage-inducible protein 45A E-mail:tangxilan1983@163.com (GADD45A) and GADD45B. The results of the verification experiments showed that compared with DOX group, there was a trend of up-regulation of COP1 mRNA, and significant down- regulation of CCNE1, GADD45A, and GADD45B mRNA expression in IMP+DOX group (P<0.05). CONCLUSIONS The effect of IMP in ameliorating DOX resistance in breast cancer is related to its regulation of COP1, CCNE1, GADD45A and GADD45B targets in the p53 signaling pathway.
2.Factors Associated with Site-specific Distribution of Glioblastoma
Wenting LI ; Hongbo BAO ; Peng LIANG
Cancer Research on Prevention and Treatment 2024;51(3):210-215
The treatment of glioblastoma, the most prevalent malignant tumor in the central nervous system, poses considerable challenges. Glioblastoma multiforme, classified as a grade Ⅳ highly malignant brain glioma by the World Health Organization, is typically managed through a combination of surgery, postoperative chemotherapy, and radiotherapy. The treatment of glioblastoma is complicated by its infiltrative nature, genetic heterogeneity, and presence of the blood-brain barrier. Almost all cases of glioblastoma experience recurrence despite aggressive therapy, exploring the development of updated molecular treatment strategies that can improve overall efficacy. A crucial aspect in modern neurosurgery is the precise delineation of brain regions in terms of their anatomy and function. It serves as the fundamental basis for investigating variations in the distribution of brain gliomas. Hence, this review will elucidate the origin of glioblastomas and analyze the potential factors contributing to the spatially specific distribution of gliomas on the basis of a theoretical framework of brain connectomics research. Molecular characteristics, information pathways, tumor microenvironment landscape, and immunology will inform the analysis. We aim to identify novel biomolecular targets and therapeutic pathways to gain scientific insights for effective glioblastoma treatment.
3.Effect of MSC-exo,a New Cell Delivery Tool,on Gene Delivery and Proliferation of Pancreatic Cancer
Lei ZHU ; Ruixue LI ; Changlei BAO ; Chenchen HUANG ; Shuxin LIANG ; Zhenlin ZHAO ; Hong ZHU
Journal of Kunming Medical University 2024;45(2):39-48
Objective To observe the effect of a new cell delivery tool(MSC exo)on the proliferation of pancreatic cancer by transferring targeted genes.Methods Transmission Electron Microscope(TEM)and Nanoparticle Tracking Analysis(NTA)were used to identify human mesenchymal stem cell exosomes(MSC-exo)and transport miR-450a-5p into CFPAC-1,to explore the effect of miR-450a-5p targeting BZW2 on inhibiting the proliferation of pancreatic cancer cells.Results The expression of miR-450a-5p was low in pancreatic cancer tissue(P<0.05),and the expression of CD63 and TSG101 of MSC-exo-miR-450a-5p in CFPAC-1 cells was higher than that of MSC-exo by Western blot(P<0.05).CCK-8 and EdU results showed that MSC-exo-miR-450a-5p significantly inhibited the proliferation of CFPAC-1 cells(P<0.05).Cell scratch and Transwell experiments showed that MSC-exo-miR-450a-5p can inhibit the migration and invasion of CFPAC-1 cells(P<0.05).Through dual luciferase assay,it was confirmed that miR-450a-5p targets BZW2,and RT-qPCR and Western blotting showed a negative correlation(P<0.05)between miR-450a-5p and BZW2 expression.Overexpression of BZW2,CCK-8,EdU,cell scratch,and Transwell experiments confirmed that pc-BZW2 reversed the anti-cancer function of MSC-exo-miR-450a-5p on CFPAC-1.Western blot detected PCNA,Ki-67,MMP2,MMP9,and the results were consistent with the above experiments(P<0.05).Conclusion hMSC exo is a new delivery system,targeting BZW2 to transport miR-450a-5p to inhibit the biological malignancy of pancreatic cancer cells,which provides an important clue for the research of targeted treatment of pancreatic cancer.
4.Short-term clinical effect of arthroscopic all-suture anchor nail in the treatment of rotator cuff injury
Tao BAO ; Yangyang HU ; Xuyong GONG ; Shuoguo WANG ; Liang WANG ; Jian YANG ; Wenyong FEI ; Yaojia LU ; Yuxia YANG ; Dianwei LIU ; Mengbo DANG ; Mingjun LI
Chinese Journal of Sports Medicine 2024;43(1):3-10
Objective To evaluate the short-term clinical effect of arthroscopic repair of rotator cuff injury with all-suture anchor using a prospective and single-cohort clinical trial.Methods Twenty-five patients with rotator cuff injuries(1.5 cm
5.Structure-activity Omics on Anti-inflammatory and Analgesic Effect of Cyperi Rhizoma in Qizhi Weitong Granules
Ying ZHENG ; Sicong LIU ; Xi LUO ; Bing QI ; Shuai WANG ; Yongrui BAO ; Tianjiao LI ; Liang WANG ; Dong YAO ; Xiansheng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(21):153-160
ObjectiveTo elucidate the pharmacodynamic substances responsible for the anti-inflammatory and analgesic effects of Cyperi Rhizoma by structure-activity omics. MethodOn the basis of the previous in vitro efficacy study by our research group, this study explored the in vivo efficacy of the flavonoids in Cyperi Rhizoma. The flavonoids in Cyperi Rhizoma and their targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), PharmMapper, Swiss TargetPrediction, and available articles. The targets of the anti-inflammatory and analgesic effects were collected from DisGeNET and Online Mendelian Inheritance in Man (OMIM). The common targets shared by flavonoids and the effects were selected as the direct targets of flavonoids endowing Cyperi Rhizoma with anti-inflammatory and analgesic effects, and protein-protein interaction (PPI) network of the core targets was constructed. The method of structure-activity omics was employed to correlate the structure and efficacy of one or more classes of chemical components in Cyperi Rhizoma with the targets as a bridge. The components were classified according to structure. Molecular docking of components to core targets was carried out via SYBYL-X 2.1.1, PyMol, and Discovery Studio 4.5 visualizer. Two targets with the highest binding affinity were selected to explore the relationship between compound structures and targets. ResultThe flavonoids in Cyperi Rhizoma exerted anti-inflammatory and analgesic effects on the mouse model of pain induced by formaldehyde. Eighteen components and 115 direct targets were screened out, and the core targets with high activities were protein kinase B1 (Akt1), interleukin-1β (IL-1β), cellular tumor antigen p53 (TP53), prostaglandin-endoperoxide synthase 2 (PTGS2), and matrix metalloproteinase-9 (MMP-9). According to the structures, the flavonoids in Cyperi Rhizoma were classified into bioflavonoids, flavonols, flavones, and flavanes. The molecular docking results showed that flavonoids of Cyperi Rhizoma had the highest binding affinity to TP53 and PTGS2. The results of structure-activity omics showed that bioflavonoids represented the best binding structure to the targets, while their polyhydroxyl etherification resulted in a significant decrease in the binding affinity to PTGS2. Glycosides had higher binding affinity to PTGS2. The introduction of the long-chain hydrocarbon group to the A ring of flavonols facilitated the binding to TP53, while the change of B ring substituents was not the main factor affecting the binding affinity. The 3,4-dihydroxyl flavane outperformed 3-hydroxyl flavane in the binding to TP53, while the two compounds showed similar binding affinity to PTGS2. ConclusionThe method of structure-activity omics was used to analyze the material basis for the anti-inflammatory and analgesic effects of flavonoids in Cyperi Rhizoma. Structure-activity omics provides new ideas for revealing the pharmacodynamic substances of traditional Chinese medicine.
6.Structure-activity Omics on Anti-inflammatory and Analgesic Effect of Glycyrrhizae Radix et Rhizoma in Qizhiweitong Granules
Ying MENG ; Ying ZHENG ; Xinpeng QIN ; Sicong LIU ; Tianjiao LI ; Yongrui BAO ; Shuai WANG ; Liang WANG ; Honghong JIANG ; Xiansheng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(21):161-168
ObjectiveTo reveal the pharmacodynamic substances for the anti-inflammatory and analgesic effects of Glycyrrhizae Radix et Rhizoma by structure-activity omics. MethodOn the basis of the previous study about the screening of active components in vitro, this study explored the effects of flavonoids in Glycyrrhizae Radix et Rhizoma in vivo. The flavonoids in Glycyrrhizae Radix et Rhizoma and their direct targets for the anti-inflammatory and analgesic effects were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), PharmMapper, Swiss TargetPrediction, DisGeNET, and Online Mendelian Inheritance in Man (OMIM). STRING and Cytoscape 3.7.2 were employed to establish the protein-protein interaction (PPI) network of key targets. Molecular docking was performed to simulate the binding of five targets with high degrees to flavonoids in Glycyrrhizae Radix et Rhizoma, on the basis of which the key core targets were selected. The targets were used as a bridge to correlate the structures and effects of one or more classes of chemical components in Glycyrrhizae Radix et Rhizoma. According to the binding affinity between flavonoids with different structures in Glycyrrhizae Radix et Rhizoma and targets, the relationships between compound structures and core targets were discussed. ResultThe flavonoids in Glycyrrhizae Radix et Rhizoma reduced the content of prostaglandin E2 (PGE2) in the rat model of pain induced by formalin, demonstrating definite anti-inflammatory and analgesic effects. Sixty active compounds (flavonoids) with anti-inflammatory and analgesic effects of Glycyrrhizae Radix et Rhizoma were obtained. With the total score as the standard, prostaglandin-endoperoxide synthase 2 (PTGS2) and mitogen-activated protein kinase 3 (MAPK3) were selected as the key core targets of Glycyrrhizae Radix et Rhizoma for the anti-inflammatory and analgesic effects. Except that flavones showed selectivity of binding to MAPK3, the other flavonoids of Glycyrrhizae Radix et Rhizoma showed strong binding to PTGS2 and MAPK3, and the structures containing glycoside fragments showed stronger binding affinity to the targets. The introduction of chain olefins in the ring of chalcones facilitated the binding to the targets. The isopentenyl fragment in flavonols may cause the difference in binding affinity. The parallel combination of a ring into pyran ring in flavanes was not conducive to the binding to the target. The electric charge, liposolubility, and steric hindrance of the substituent group on the B ring of isoflavones directly affected the binding affinity. ConclusionThis study adopts structure-activity omics to analyze the material basis for the anti-inflammatory and analgesic effects of Glycyrrhizae Radix et Rhizoma. Structure-activity omics provides new ideas and methods for predicting the pharmacodynamic substances of traditional Chinese medicine.
7.Modified calcaneal plate combined with suture anchors in treatment of comminuted fracture of split-type greater tuberosity of humerus(Liu-Gang type IV)
Gang LIU ; Baolu ZHANG ; Ruichen LI ; Xiaomei HOU ; Hong LUO ; Canhao LAI ; Qingyuan LI ; Xia LIANG ; Dingsu BAO ; Shijie FU ; Shengqiang ZENG
Chinese Journal of Tissue Engineering Research 2024;28(24):3855-3861
BACKGROUND:Numerous scholars have previously researched certain greater tuberosity fractures and the procedures used to treat them.Few researchers,however,have studied the comminuted split fracture of the greater tuberosity of the humerus(Liu-Gang type IV)with rotator cuff tear in great detail. OBJECTIVE:To compare the clinical therapeutic effect of open repair position modified calcaneal plate combined with suture anchors and proximal humeral internal locking system(PHILOS)plate in the treatment of comminuted fracture of split-type greater tuberosity of humerus combined with rotator cuff tears(Liu-Gang type IV). METHODS:Case data of 30 patients with comminuted fracture of split-type greater tuberosity of humerus combined with rotator cuff tears(Liu-Gang type IV)from May 2012 to May 2022 were retrospectively analyzed.They were divided into the modified calcaneal plate combined with suture anchor group(group A)and the PHILOS with#2 Johnson group(group B),with 15 cases in each group.Intraoperative blood loss,surgical time,and incision length of all patients were recorded.Pain visual analog scale score,Constant-Murley score,as well as shoulder joint abduction,forward flexion,external rotation,and dorsal expansion activities during the last follow-up(>1 year)were evaluated. RESULTS AND CONCLUSION:(1)The surgical incision length and operation time were shorter,and blood loss was less in group A than those in group B(P<0.05).(2)No significant difference in visual analog scale score and Constant-Murley score was detected between the two groups(P>0.05).(3)During the last follow-up,forward flexion in group A was better than that in group B(P<0.05).No significant difference in abduction,external rotation,and dorsal expansion was determined between group A and group B(P>0.05).(4)In terms of complications,there was 1 case of shoulder joint pain and discomfort in group A(7%),2 cases of subacromial impingement syndrome,2 cases of upward movement of nodules,and 2 cases of shoulder joint pain(40%)in group B.There were significant differences in complication rates between the two groups(P=0.031).(5)In summary,the modified calcaneal plate combined with suture anchors in the treatment of comminuted fracture of split-type greater tuberosity of humerus combined with rotator cuff tears(Liu-Gang type IV)could better restore the forward flexion function of the shoulder joint and has a small incision,less blood loss,shorter operation time and fewer complications.
8.Aerobic exercise upregulates the thioredoxin system and inhibits cardiomyocyte apoptosis in aging rats
Zheng XU ; Xiaoqin ZHAO ; Xiaodan CHEN ; Jiapu WANG ; Fenmiao BAO ; Liang YU ; Junping LI ; Yan WEI
Chinese Journal of Tissue Engineering Research 2024;28(34):5508-5515
BACKGROUND:Studies have shown that cardiomyocyte apoptosis is closely related to cardiac decompensation and the cardiac aging process.Appropriate exercise can alter heart pump function in patients with heart failure as well as attenuate aging-induced cardiomyocyte apoptosis,hypertrophy,and fibrotic damage. OBJECTIVE:To investigate the effects of long-term aerobic exercise on cardiomyocyte apoptosis and the thioredoxin system in aging rats. METHODS:Thirty-six male Sprague-Dawley rats were selected and divided into three age groups:3-month-old young group,9-month-old middle-aged group,and 18-month-old elderly group,with 12 rats in each group.Within each age group,rats were randomly assigned to sedentary and exercise subgroups(n=6 per group).The sedentary groups did not undergo any exercise intervention.The exercise groups were acclimated to a treadmill environment and subsequently subjected to treadmill exercise for 45 minutes per day,at a speed of 15 m/min,5 days per week for 10 weeks in total.At 24 hours after the final intervention,ELISA was employed to measure serum levels of cardiac troponin I and creatine kinase-MB in rats.TUNEL assay was utilized to detect cardiomyocyte apoptosis,while western blot assay was employed to assess the protein expression of Bax,Bcl-2,Caspase 3,thioredoxin-1,thioredoxin-2,thioredoxin reductase-1,thioredoxin reductase-2,thioredoxin-interacting protein,apoptosis signal-regulating kinase 1,and P38 mitogen-activated protein kinase in rat myocardial tissue. RESULTS AND CONCLUSION:Serum levels of cardiac troponin I and creatine kinase-MB in the elderly sedentary group were significantly higher than those in the young and middle-aged sedentary groups and elderly exercise group(P<0.01).Serum levels of cardiac troponin I and creatine kinase-MB in the elderly sedentary group were significantly higher than those in the young and middle-aged exercise groups and elderly exercise group(P<0.01).Positive apoptotic cells in rat myocardial tissue,along with increased protein expression of Bax and Caspase 3,exhibited an age-related upward trend,while Bcl-2 protein expression showed a declining trend.In comparison with the sedentary groups within each age category,the number of apoptotic cardiomyocytes and the expression of Bax and Caspase 3 proteins were reduced to different degrees,and the expression of Bcl-2 protein was increased to different degrees in the corresponding exercise groups.Compared with the young sedentary group,middle-aged sedentary group and elderly exercise group,elderly sedentary rats showed a significant decrease in the expression of myocardial thioredoxin 1,thioredoxin 2,thioredoxin reductase 1,and thioredoxin reductase 2 proteins(P<0.05,P<0.01).The expression of myocardial thioredoxin 1,thioredoxin 2,and thioredoxin reductase 2 proteins was lower in the elderly exercise group than in the young exercise group(P<0.05,P<0.01),while the expression of thioredoxin reductase 1 and thioredoxin reductase 2 proteins was lower in the elderly exercise group than in the middle-aged exercise group(P<0.01).The protein expression of thioredoxin-interacting protein,apoptosis signal-regulating kinase 1,and P38 mitogen-activated protein kinase in rat myocardium was significantly higher in the elderly sedentary group than the young sedentary group,middle-aged sedentary group and elderly exercise group(P<0.01).The protein expression of thioredoxin-interacting protein,apoptosis signal-regulating kinase 1,and P38 mitogen-activated protein kinase in rat myocardium was significantly higher in the elderly exercise group than the young exercise group and middle-aged exercise group(P<0.01).To conclude,aerobic exercise may enhance the anti-apoptotic effects of thioredoxin by down-regulating the expression of thioredoxin-interacting protein in aging rat hearts,leading to the downregulation of apoptosis signal-regulated kinase 1 and P38 mitogen-activated kinase protein,thereby alleviating myocardial cell apoptosis in aging rat hearts.
9.Ethylene oxide residue detection method based on multi-component medical devices
Ruo-Jin LIU ; Zi-Meng WANG ; Hui LI ; Wen-Liang SHAO ; Bao-Yu LIU ; Yi FENG
Chinese Medical Equipment Journal 2024;45(1):56-61
Objective To establish a stable and reliable method for the determination of ethylene oxide residue,and to analyze ethylene oxide residue in multi components made of different materials involved in some medical devices,so as to provide references for sample selection and ethylene oxide residue detection of multi-component medical device kits.Methods A method for the determination of ethylene oxide residue of multi-component medical devices was developed using headspace-gas chromatography and DB-WAX column under the conditions of headspace extraction with equilibration at 80℃ for 20 min,and the weighing mass,linearity,limit of detection,limit of quantification,precision and recovery of the method were determined.Trials of the method were carried out on the items undergoing ethylene oxide sterilization,including disposable perineal care kit,disposable gynecological examination kit,disposable suture dressing kit,disposable debridement kit and the components contacting human body in the disposable dialysis kit,and the abilities of different materials of the components were analyzed in absorbing,retaining and releasing ethylene oxide.Results The method showed high linearity(r=0.999 8)in the range of ethylene oxide mass concentration from 0.4 to 16.0 μg/mL with a weighing mass of 1.00 g,which had the limit of detection being 0.11 μg/mL,the limit of quantification being 0.37 μg/mL and the relative standard deviations(RSDs)for the precision from 0.35%to 1.52%.The average recoveries of different spiked amounts of ethylene oxide in the three blank matrices ranged from 92.68%to 101.42%with the relative standard deviations(RSDs)from 2.46%to 7.59%,which all satisfied the detection requirements.The components made of rubber and acrylonitrile-butadiene-styrene copolymer(ABS)in multi-component medical device kits had the highest ethylene oxide residues,followed by the components made of wood,degreased cotton,polypropylene and polystyrene.Conclusion The method proposed gains advantages in easy operation and high specificity,quantification and reproducibility,which can be used for the determination of ethylene oxide residue in the multi-component medical device kit undergoing ethylene oxide sterilization.References are provided for sample selection of multi-component medical devices.[Chinese Medical Equipment Journal,2024,45(1):56-61]
10.Structure-activity Omics on Anti-inflammatory and Analgesic Effect of Bupleuri Radix in Qizhi Weitong Granules
Xi LUO ; Bing QI ; Ying MENG ; Xinpeng QIN ; Yongrui BAO ; Tianjiao LI ; Liang WANG ; Shuai WANG ; Xiansheng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(15):146-153
ObjectiveTo identify the pharmacodynamic substances for the anti-inflammatory and analgesic effects of Bupleuri Radix by structure-activity omics. MethodA mouse model of pain was established with formaldehyde to examine the anti-inflammatory and analgesic effects of saikosaponins in vivo. The core targets of the active components in Bupleurum Radix for the anti-inflammatory and analgesic effects were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Online Mendelian Inheritance in Man (OMIM), and Search Tool for Recurring Instances of Neighbouring Genes (STRING). The key core targets with high binding affinity were screened based on the comprehensive score in the molecular docking between different types of saikosaponins and core targets. The structure-activity relationship was discussed and analyzed based on the binding of compounds to pharmacodynamic targets. ResultSaikosaponins alleviated the foot swelling induced by formaldehyde and reduced the content of prostaglandin E2 (PGE2) in the mouse model, showcasing a significant inhibitory effect on the inflammatory pain caused by PGE2. Nine components and 39 targets of saikosaponins, as well as 3 074 targets of anti-inflammatory and analgesic effects were screened out, and 22 common targets shared by saikosaponins and the effects were obtained as the direct targets. The protein-protein interaction (PPI) analysis showed that the main active components of Bupleurum Radix were saikosaponins a, b1, b2, b3, c, d, e, f, and v, and the key targets were fms-related receptor tyrosine kinase 1 (FLT1), kinase insert domain receptor (KDR), fibroblast growth factor 2 (FGF2), vascular endothelial growth factor A (VEGFA), and signal transducer and activator of transcription 3 (STAT3). Molecular docking between saikosaponins and the top 5 targets with high degrees in PPI network analysis revealed 25 highly active docks, including 6 docks with scores of 5-6 and 18 docks with scores above 6. ConclusionThis study adopted structural-activity omics to analyze the material basis for the anti-inflammatory and analgesic effects of Bupleuri Radix in vivo, providing new ideas and methods for identifying the pharmacodynamic substances in traditional Chinese medicine.

Result Analysis
Print
Save
E-mail