1.Mechanism of Huangqi Guizhi Wuwutang in Treatment of Sarcopenia Associated with Rheumatoid Arthritis by Improving Skeletal Muscle Homeostasis Through Regulation of Autophagy
Yakun WAN ; Yuan LIU ; Yuan QU ; Jingyu GUO ; Ting LIU ; Zhihui BAI ; Di ZHANG ; Ping JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):12-23
ObjectiveThis study aims to explore the mechanism of action of Huangqi Guizhi Wuwutang in treating rheumatoid arthritis (RA)-associated sarcopenia by regulating autophagy and improving skeletal muscle homeostasis based on network pharmacology,bioinformatics,machine learning,and animal experiments. MethodsActive ingredients and targets of Huangqi Guizhi Wuwutang were screened using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP),PubChem,and SwissTargetPrediction databases. RA-related datasets were retrieved from the GEO database,and differential genes were screened. Sarcopenia-related targets were searched through GeneCards and the Comparative Toxicology Database (CTD),and autophagy-related gene sets were downloaded from the Human Autophagy Database (HADb). Their intersection was analyzed to identify autophagy-related therapeutic targets,followed by enrichment analysis. A protein-protein interaction (PPI) network was constructed using the STRING database,and key targets were selected using multiple methods. Machine learning was applied to predict models based on the expression profiles of intersecting targets,and nomogram models were constructed based on key targets. Molecular docking of the top four active ingredients with key targets was performed using AutoDockVina. A collagen-induced arthritis (CIA) rat model was established using bovine type Ⅱ collagen,with SD rats divided into groups including a blank group,a model group,and low-,medium-,and high-dose groups of Huangqi Guizhi Wuwutang (2.44,4.88,and 9.76 g·kg-1) and administered for five consecutive weeks. Joint scores and gastrocnemius muscle mass were recorded and analyzed after modeling. Hematoxylin and eosin (HE) staining and Masson's staining were used to observe pathological changes in muscle tissue. Immunofluorescence staining was applied to observe the protein expression levels of myosin heavy chain (MYHC) and insulin-like growth factor-1 (IGF-1) in skeletal muscle. Western blot was used to detect the protein expression levels of autophagy-related proteins ATG5,Beclin1,LC3B,muscle-specific proteins (MuRF1),MaFbx,and MYHC. Real-time quantitative reverse transcription PCR (Real-time PCR) was performed to measure the mRNA expression levels of ATG5,Beclin1,LC3B,MuRF1,MaFbx,and MYHC in muscle tissue. ResultsNetwork pharmacology revealed that Huangqi Guizhi Wuwutang shared 25 common targets with autophagy genes related to RA-associated sarcopenia. The PPI network and machine learning identified six key targets,which were primarily involved in autophagy and inflammatory pathways. Animal experiments showed that compared to the blank group,the model group had significantly higher joint scores (P<0.01) and lower gastrocnemius muscle index (P<0.01). HE staining indicated a significant reduction in the cross-sectional area of gastrocnemius muscle fibers,with notable inflammatory cell infiltration and muscle atrophy in the model group. Masson's staining revealed obvious collagen fiber proliferation and deposition,with significant muscle fibrosis in the model group. The protein and mRNA expression levels of ATG5,Beclin1,LC3B,MuRF1,and MaFbx were significantly increased (P<0.01),while the protein expression of MYHC and IGF1 was significantly downregulated (P<0.01). Compared with the model group,the high-dose group of Huangqi Guizhi Wuwutang showed significantly reduced protein and mRNA expression levels of ATG5,Beclin1,LC3B,MuRF1,and MaFbx (P<0.01) and increased protein expression levels of MYHC and IGF1 (P<0.01). The cross-sectional area of muscle fibers increased,and the muscle cell morphology approached normal. Moreover,pathological abnormalities in the gastrocnemius muscle were significantly improved,with reduced collagen fiber proliferation (P<0.01). ConclusionHuangqi Guizhi Wuwutang can mediate autophagy by regulating the expression of ATG5,Beclin1,LC3B,and IGF1,thereby reducing skeletal muscle catabolism and improving skeletal muscle homeostasis,which contributes to the treatment of RA-associated sarcopenia. The findings provide insight into the mechanisms underlying the effects of Huangqi Guizhi Wuwutang in the treatment of RA-related sarcopenia and offer a reference for its enhanced clinical application.
2.Concordance and pathogenicity of copy number variants detected by non-invasive prenatal screening in 38,611 pregnant women without fetal structural abnormalities.
Yunyun LIU ; Jing WANG ; Ling WANG ; Lin CHEN ; Dan XIE ; Li WANG ; Sha LIU ; Jianlong LIU ; Ting BAI ; Xiaosha JING ; Cechuan DENG ; Tianyu XIA ; Jing CHENG ; Lingling XING ; Xiang WEI ; Yuan LUO ; Quanfang ZHOU ; Ling LIU ; Qian ZHU ; Hongqian LIU
Chinese Medical Journal 2025;138(4):499-501
3.Scientific analysis and usage reassessment of suspected medicinal cinnabar unearthed from Mawangdui Tomb No.3 of the Han Dynasty.
Ning-Ning XU ; Ting-Yan REN ; Ming-Jie LI ; Pan XIAO ; Guo-Hui SHEN ; Ji-Qing BAI ; Qi LIU
China Journal of Chinese Materia Medica 2025;50(11):2915-2923
Cinnabar(HgS) was widely used in ancient times for medicinal purposes, religious rituals, and pigments. A group of bright red powdery clumps was excavated from Mawangdui Tomb No.3 of the Han Dynasty. Early studies considered the clumps as evidence of cinnabar's medicinal use during the Qin-Han period. This study employed a range of archaeometric techniques, including extended-depth-of-field stereo imaging, micro-CT, scanning electron microscopy-energy dispersive spectroscopy, Raman spectroscopy, and Fourier transform infrared spectrometry FTIR, to systematically analyze the material composition and structural characteristics of these remains. The results revealed that the cinnabar particles were granular, finely ground, and tightly bound to silk matrix, with no detectable excipients typically associated with medicinal formulations. Micro-CT imaging indicated a well-preserved textile structure, with clear signs of sedimentary accumulation and mechanical damage. Based on historical and archaeological studies, this study suggested that these remains were more likely degraded accumulations of cinnabar-colored silk textiles rather than medicinal cinnabar. By clarifying the diversity of ancient cinnabar applications and preservation states, this study provides new insights for the archaeological identification of mineral medicinal materials and contributes to the standardized study of Chinese medicinal materials and understanding of the historical use of cinnabar.
History, Ancient
;
China
;
Humans
;
Medicine, Chinese Traditional/history*
;
Archaeology
;
Drugs, Chinese Herbal/history*
;
Spectroscopy, Fourier Transform Infrared
;
Spectrum Analysis, Raman
;
Mercury Compounds
4.Research of injury mapping relationship of lumbar spine in reclined occupants between anthropomorphic test devices and human body model.
Yu LIU ; Jing FEI ; Xin-Ming WAN ; Pei-Feng WANG ; Zhen LI ; Xiao-Ting YANG ; Lin-Wei ZHANG ; Zhong-Hao BAI
Chinese Journal of Traumatology 2025;28(2):130-137
PURPOSE:
To judge the injury mode and injury severity of the real human body through the measured values of anthropomorphic test devices (ATD) injury indices, the mapping relationship of lumbar injury between ATD and human body model (HBM) was explored.
METHODS:
Through the ATD model and HBM simulation, the mapping relationship of lumbar injury between the 2 subjects was explored. The sled environment consisted of a semi-rigid seat with an adjustable seatback angle and a 3-point seat belt system with a seatback-mounted D-ring. Three seatback recline states of 25°, 45°, and 65° were designed, and the seat pan angle was maintained at 15°. A 23 g, 47 km/h pulse was used. The validity of the finite element model of the sled was verified by the comparison of ATD simulation and test results. ATD model was the test device for human occupant restraint for autonomous vehicles (THOR-AV) dummy model and HBM was the total human model for safety (THUMS) v6.1. The posture of the 2 models was adjusted to adapt to the 3 seat states. The lumbar response of THOR-AV and the mechanical and biomechanical data on L1 - L5 vertebrae of THUMS were output, and the response relationship between THOR-AV and THUMS was descriptive statistically analyzed.
RESULTS:
Both THOR-AV and THUMS were submarined in the 65° seatback angle case. With the change of seatback angle, the lumbar spine axial compression force (Fz) of THOR-AV and THUMS changed in the similar trend. The maximum Fz ratio of THOR-AV to THUMS at 25° and 45° seatback angle cases were 1.6 and 1.7. The flexion moment (My) and the time when the maximum My occurred in the 2 subjects were very different. In particular, the form of moment experienced by the L1 - L5 vertebrae of THUMS also changed. The changing trend of My measured by THOR-AV over time can reflect the changing trend of maximum stress of L1 and L2 of THUMS.
CONCLUSION
The Fz of ATD and HBM presents a certain proportional relationship, and there is a mapping relationship between the 2 subjects on Fz. The mapping function can be further clarified by applying more pulses and adopting more seatback angles. It is difficult to map My directly because they are very different in ATD and HBM. The My of ATD and stress of HBM lumbar showed a similar change trend over time, and there may be a hidden mapping relationship.
Humans
;
Lumbar Vertebrae/injuries*
;
Finite Element Analysis
;
Biomechanical Phenomena
;
Manikins
;
Spinal Injuries/physiopathology*
5.Xuebijing injection reduces COVID-19 patients' mortality as influenced by the neutrophil to lymphocyte platelet ratio.
Man LIAO ; Li-Ting ZHANG ; Li-Juan BAI ; Rui-Yun WANG ; Yun LIU ; Jing HAN ; Li-Hua LIU ; Ben-Ling QI
Journal of Integrative Medicine 2025;23(3):282-288
OBJECTIVE:
Xuebijing injection has been recommended as a therapeutic approach for individuals with severe and critical COVID-19. This study aims to explore the correlation of neutrophil to lymphocyte platelet ratio (NLPR) with the severity and prognosis of COVID-19, and the effect of XBJ on the prognosis of patients with COVID-19 in different inflammatory states.
METHODS:
This was a retrospective study conducted at Wuhan Union Hospital in China. COVID-19 patients admitted between November 1, 2022 and February 1, 2023 were included. In predicting prognosis for individuals with COVID-19, new inflammatory indicators were used, and their prognostic value was assessed by using Cox regression models and receiver operating characteristic curves. Furthermore, a calculation was made to determine the cutoff value for NLPR. Relative risk and Cox regression models were used to examine the effects of Xuebijing injection on prognosis in patient cohorts that had been stratified by the NLPR cutoff.
RESULTS:
This research included 455 participants with COVID-19, with a mean age of 72 years. Several inflammatory indicators were found to be strongly correlated with prognosis, and NLPR shows the greatest predictive power. Patients with NLPR > 3.29 exhibited a mortality rate of 17.3%, which was 6.2 times higher than in patients with NLPR ≤ 3.29. Importantly, providing Xuebijing injection to patients with NLPR > 3.29 was associated with a lower risk of 60-day all-cause mortality. However, there was no discernible improvement in survival among patients with NLPR ≤ 3.29 who received Xuebijing injection.
CONCLUSION
NLPR is the most reliable inflammatory marker for predicting prognosis among individuals with COVID-19, and can accurately identify individuals who may benefit from Xuebijing injection. Please cite this article as: Liao M, Zhang LT, Bai LJ, Wang RY, Liu Y, Han J, Liu LH, Qi BL. Xuebijing injection reduces COVID-19 patients mortality as influenced by the neutrophil to lymphocyte platelet ratio. J Integr Med. 2025; 23(3): 282-288.
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Female
;
Retrospective Studies
;
Aged
;
Neutrophils
;
COVID-19 Drug Treatment
;
COVID-19/blood*
;
Middle Aged
;
Prognosis
;
Lymphocytes
;
Blood Platelets
;
Platelet Count
;
SARS-CoV-2
;
Aged, 80 and over
;
Adult
6.W 18O 49 Crystal and ICG Labeled Macrophage: An Efficient Targeting Vector for Fluorescence Imaging-guided Photothermal Therapy.
Yang BAI ; Guo Qing FENG ; Muskan Saif KHAN ; Qing Bin YANG ; Ting Ting HUA ; Hao Lin GUO ; Yuan LIU ; Bo Wen LI ; Yi Wen WU ; Bin ZHENG ; Nian Song QIAN ; Qing YUAN
Biomedical and Environmental Sciences 2025;38(1):100-105
7.Protective effect of quercetin mediated ferroptosis pathway on hypertonic stimulation induced dry eye cell model
Jia-Di WANG ; Bai-Ping AN ; Yue LIU ; Cong-Hong CAO ; Bei-Ting ZONG ; Jing YAO
The Chinese Journal of Clinical Pharmacology 2024;40(4):529-533
Objective To investigate the effect of quercetin on HCE-2 injury of human corneal epithelial cells induced by high osmotic pressure and its mechanism.Methods HCE-2 cells were randomly divided into control group(normal osmotic pressure),model group(high osmotic pressure),experimental-L group(high osmotic pressure+31.25 pg·mL-1 quercetin),experimental-M group(high osmotic pressure+62.50 μg·mL-1 quercetin),experimental-H group(high osmotic pressure+125.00 μg·mL-1 quercetin),erastin group(high osmotic pressure+125.00 μg·mL-1 quercetin+30.00 μmol·L-1 iron death inducer erastin).Cell survival rate was detected by cell counting kit 8;reactive oxygen species(ROS)levels was detected by C11-BODIPY 581/591 probe staining;glutathione(GSH)and malondialdehyde(MDA)levels were determined by kit method;the expression levels of glutathione peroxidase 4(GPX4),dihydrolactate dehydrogenase(DHODH)and ferroptosis suppressor protein 1(FSP1)were detected by real-time quantitative polymerase chain reaction and Western blot.Results The cell survival rates of control group,model group,experimental-H group and erastin group were(100.00±3.97)%,(50.05±5.83)%,(86.35±7.35)%and(58.32±4.66)%,respectively;ROS levels were 1.00±0.09,2.45±0.16,1.19±0.05 and 2.09±0.30,respectively;GPX4 protein levels were 1.09±0.11,0.34±0.03,0.91±0.12 and 0.30±0.04,respectively;FSP1 protein levels were 0.92±0.06,0.25±0.03,0.89±0.07 and 0.39±0.07,respectively;DHODH protein levels were 0.89±0.11,0.31±0.04,0.86±0.11,0.41±0.04,respectively.Compared with model group,the above indexes in control group were statistically significant(all P<0.05);the differences between experimental-H group and model group were statistically significant(all P<0.05);the above indexes in erastin group were significantly different from those in experimental-H group(all P<0.05).Conclusion Quercetin can ameliorate HCE-2 cell damage induced by high osmotic pressure by inhibiting iron death pathway.
8.Risk control in phase Ⅰ clinical trials of macromolecular drugs
Wen-Jing BAI ; Juan WANG ; Yue LIU ; Ting-Ting WANG ; Ti-Ti WANG ; Ya-Ru WANG ; Yu-Ying YIN ; Xin WANG
The Chinese Journal of Clinical Pharmacology 2024;40(16):2424-2427
The author analyzed the characteristics of phase Ⅰ clinical trials of macromolecular drugs,the characteristics of evaluation indicators of phase Ⅰ clinical trials of macromolecular drugs,such as safety evaluation,pharmacokinetic and pharmacodynamic evaluation,and efficacy evaluation.And the control points of subjects management,management of experimental macromolecule drugs,and identified and potential risk factors of macromolecule drugs in the implementation of risk management for phase Ⅰ clinical trials of macromolecule drugs were discussed in depth based on previous clinical trial research experience.Through discussion and analysis,the author suggests that each research center can formulate risk control strategies according to the actual situation,improve the efficiency of risk control,and facilitate the smooth implementation of clinical trials and improve the quality of clinical trials.
9.Barley Protein LFBEP-C1 from Lactiplantibacillus plantarum dy-1 Fermented Barley Extracts by Inhibiting Lipid Accumulation in a Caenorhabditis elegans Model
Yan Jia ZHANG ; Ting Meng LIU ; Hao Yu LIU ; Huan DENG ; Juan BAI ; Hua Jian XIE ; Xiang XIAO
Biomedical and Environmental Sciences 2024;37(4):377-386
Objective This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans(C.elegans). Methods In this study,the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C.elegans.The worms were fed Escherichia coli OP50(E.coli OP50),glucose,and different concentrations of LFBEP-C1.Body size,lifespan,movement,triglyceride content,and gene expression were analyzed.The results were analyzed using ANOVA and Tukey's multiple comparison test. Results Compared with the model group,the head-swing frequency of C.elegans in the group of LFBEP-C1 at 20 μg/mL increased by 33.88%,and the body-bending frequency increased by 27.09%.This indicated that LFBEP-C1 improved the locomotive ability of C.elegans.The average lifespan of C.elegans reached 13.55 days,and the body length and width of the C.elegans decreased after LFBEP-C1 intake.Additionally,LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels.The expression levels of sbp-1,daf-2,and mdt-15 significantly decreased,while those of daf-16,tph-1,mod-1,and ser-4 significantly increased after LFBEP-C1 intake.Changes in these genes explain the signaling pathways that regulate lipid metabolism. Conclusion LFBEP-C1 significantly reduced lipid deposition in C.elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development,lifespan,and exercise behavior of C.elegans.In addition,LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein,insulin,and 5-hydroxytryptamine signaling pathways.
10.Research progress in regulation and mechanism of transcription factors on tanshinones
Yan-hong BAI ; Lin-lin XIN ; Ting ZENG ; Feng-xia HAN ; Yong-qing ZHANG ; Gao-bin PU ; Xue CHEN ; Qian LIU
Acta Pharmaceutica Sinica 2024;59(5):1218-1228
italic>Salvia miltiorrhiza, a commonly used traditional Chinese medicine, has been widely recognized for its blood-activating and stasis-removing properties in the clinical treatment of cardiovascular and cerebrovascular diseases. The synthesis and regulatory mechanism of tanshinones, the key active constituents of

Result Analysis
Print
Save
E-mail