1.Construction, screening and immunogenicity of the recombinant poxvirus vaccine rVTTδTK-RBD against SARS-CoV-2.
Renshuang ZHAO ; Yilong ZHU ; Chao SHANG ; Jicheng HAN ; Zirui LIU ; Zhiru XIU ; Shanzhi LI ; Yaru LI ; Xia YANG ; Xiao LI ; Ningyi JIN ; Xin JIN ; Yiquan LI
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):19-25
Objective To construct a recombinant poxvirus vector vaccine, rVTTδTK-RBD, and to evaluate its safety and immunogenicity. Methods The receptor-binding domain (RBD) gene was synthesized with reference to the gene sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was inserted into the polyclonal site of the self-constructed recombinant plasmid pSTKE, to construct the recombinant poxvirus shuttle vector pSTKE-RBD. This was then transfected into BHK-21 cells pre-infected with the vaccinia virus Tiantan strain (VTT). The recombinant poxvirus rVTTδTK-RBD was successfully obtained after several rounds of fluorescence phage screening. The effect of rVTTδTK-RBD on the body mass of BALB/c mice was detected after immunizing mice by intra-nasal vaccination. The levels of specific and neutralizing antibodies produced by rVTTδTK-RBD on BALB/c mice were analyzed after immunizing mice intramuscularly. The effect of rVTTδTK-RBD on T cell subsets in BALB/c mice was detected by flow cytometry. Results Through homologous recombination, enhanced green fluorescent protein (EGFP) screening marker, and multiple rounds of fluorescent phosphorescence phage screening, a recombinant poxvirus rVTTδTK-RBD, expressing RBD with deletions in the thymidine kinase (TK) gene, was successfully obtained, which was validated by PCR. The in vivo experiments on BALB/c mice showed that rVTTδTK-RBD was highly immunogenic against SARS-CoV-2 and significantly reduced toxicity to the body compared to the parental strain VTT. Conclusion The recombinant poxvirus vaccine rVTTδTK-RBD against SARS-CoV-2 is successfully constructed and obtained, with its safety and immunogenicity confirmed through various experiments.
Animals
;
Mice
;
SARS-CoV-2/genetics*
;
COVID-19
;
Vaccines, Synthetic/genetics*
;
Genes, Reporter
;
Bacteriophages
;
Mice, Inbred BALB C
2.Phage antibody library technology in tumor therapy: a review.
Xiaoyang CHEN ; Ruiheng AN ; Ju HUANG ; Youfeng LIANG ; Wenjing ZHANG ; Mingxuan HAO ; Rui GUO ; Xiaoning LI ; Yongchao LI ; Lu YING ; Zhao YANG
Chinese Journal of Biotechnology 2023;39(9):3644-3669
Tumor is a serious threat to human health. At present, surgical resection, chemoradiotherapy, targeted therapy and immunotherapy are the main therapeutic strategies. Monoclonal antibody has gradually become an indispensable drug type in the clinical treatment of cancer due to its high efficiency and low toxicity. Phage antibody library technology (PALT) is a novel monoclonal antibody preparation technique. The recombinant immunoglobulin variable region of heavy chain (VH)/variable region of light chain (VL) gene is integrated into the phage vector, and the antibody is expressed on the phage surface in the form of fusion protein to obtain a diverse antibody library. Through the process of adsorption-elution-amplification, the antibody library can be screened to obtain the antibody molecule with specific binding antigen as well as its gene sequence. PALT has the advantages of short antibody production cycle, strong plasticity of antibody structure, large antibody yield, high diversity and direct production of humanized antibodies. It has been used in screening tumor markers and preparation of antibody drugs for breast cancer, gastric cancer, lung cancer and liver cancer. This article reviews the recent progress and the application of PALT in tumor therapy.
Humans
;
Bacteriophages/genetics*
;
Immunoglobulin Variable Region/genetics*
;
Gene Library
;
Antibodies, Monoclonal/therapeutic use*
;
Immunotherapy
;
Peptide Library
3.Preparation and properties of hydrogels loaded with phage endolysin Lys84.
Xiaoyan LI ; Hong LIN ; Jingxue WANG
Chinese Journal of Biotechnology 2023;39(9):3876-3886
This study investigated the application of poly(N-isopropylacrylamide)-based interpenetrating network temperature-sensitive hydrogels (notation: IPNT) as the delivery vehicle for phage endolysin Lys84 and the potential of drug-loaded hydrogels as antimicrobial materials. Interpenetrating network temperature-sensitive hydrogels were prepared by free radical polymerization of sodium alginate and N-isopropylacrylamide. Drug-loaded hydrogels (IPNT-Lys84) were obtained by dry soaking method with the endolysin Lys84 of Staphylococcus aureus phage. The physical properties of the hydrogels with and without drug loading were characterized by infrared spectroscopy, scanning electron microscopy, and differential scanning calorimetry. The swelling and deswelling of the hydrogels as well as the release of endolysin Lys84 were investigated. Moreover, the antibacterial properties of IPNT-Lys84 hydrogels at different temperatures and concentrations of the drug solution were studied. The results showed that IPNT-Lys84 hydrogel had uniform pores and a low critical solubility temperature (LCST) of 32 ℃. The equilibrium swelling of the hydrogel was 30 g/g, and the water loss rate was 88% upon deswelling. The release rate of endolysin reached more than 70% within 6 h at 37 ℃. The bactericidal rate of IPNT-Lys84 hydrogel was over 99.9%. The research results showed the feasibility of using IPNT to deliver the endolysin Lys84, and IPNT-Lys84 hydrogel might be an effective antimicrobial material against multi-drug resistant Staphylococcus aureus.
Hydrogels/chemistry*
;
Bacteriophages
;
Methicillin-Resistant Staphylococcus aureus
;
Temperature
;
Anti-Infective Agents
4.Establishment and evaluation of a method for phages enrichment by ferric trichloride-polyvinylidene fluoride membrane filter.
Hua Yao ZHANG ; Zhe TIAN ; Song TANG ; Hai Jian ZHOU ; Fen Xia FAN ; Biao KAN
Chinese Journal of Preventive Medicine 2023;57(3):443-450
Objective: To establish and evaluate a method of enriching bacteriophages in natural water based on ferric trichloride-polyvinylidene fluoride (FeCl3-PVDF)membrane filter. Methods: Based on the principle of flocculation concentration, the method of recovering bacteriophage from water sample was established by using iron ion flocculation combined with membrane filter. The titer of phage was determined by Agar double layer method. The recovery efficiency of phage was detected by phage fluorescence staining and real-time fluorescence PCR reaction. Water samples from different sources were collected for simulation experiment to evaluate the enrichment effect. At the same time, the sewage discharged from hospitals was taken as the actual water sample, and the common clinical drug-resistant bacteria were used as the host indicator bacteria to further analyze the enrichment effect of FeCl3-PVDF membrane filter rapid enrichment method on the bacteriophage in natural water samples. Results: The method of enrichment of bacteriophages in natural water by iron ion concentration 50 mg/L and PVDF membrane filter was established. The recovery rate of this method for bacteriophage was 93%-100%. Under the multi-functional microscope, it was found that the bacteriophage of the enriched water sample increased significantly and the fluorescence value of the enriched water sample determined by the enzyme labeling instrument was about 13 times as high as that before enrichment. After concentration of the actual water samples from the hospital drainage, the positive rate of bacteriophage isolation in the concentrated group and the non-concentrated group was 23% and 4%, and the fluorescence value in the concentrated group was 2-24 times as high as that of the non-concentrated group. Conclusion: The method of FeCl3-PVDF membrane filter is a simple, efficient and rapid method for enriching bacteriophages in different water samples.
Humans
;
Bacteriophages
;
Bacteria
;
Iron
;
Iron, Dietary
;
Water
5.Prevention and control of antimicrobial resistance using CRISPR-Cas system: a review.
Chenyu WANG ; Zhizhi LIU ; Biao TANG ; Hua YANG ; Dongchang SUN
Chinese Journal of Biotechnology 2022;38(4):1432-1445
Bacterial multi-drug resistance (MDR) is a global challenge in the fields of medicine and health, agriculture and fishery, ecology and environment. The cross-region spread of antibiotic resistance genes (ARGs) among different species is one of the main cause of bacterial MDR. However, there is no effective strategies for addressing the intensifying bacterial MDR. The CRISPR-Cas system, consisting of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated proteins, can targetedly degrade exogenous nucleic acids, thus exhibiting high application potential in preventing and controlling bacterial MDR caused by ARGs. This review briefly introduced the working mechanism of CRISPR-Cas systems, followed by discussing recent advances in reducing ARGs by CRISPR-Cas systems delivered through mediators (e.g. plasmids, bacteriophages and nanoparticle). Moreover, the trends of this research field were envisioned, providing a new perspective on preventing and controlling MDR.
Anti-Bacterial Agents
;
Bacteriophages/genetics*
;
CRISPR-Cas Systems
;
Drug Resistance, Bacterial/genetics*
;
Plasmids/genetics*
6.Preliminary Study on Screening and Identification of Lewis a Antigen Mimic Epitope in Alpaca Phage Display Nanobody Library.
Xiao-Long ZHONG ; Lu YANG ; Jie ZHANG ; Li-Ping SUN ; Ming-Zi MA ; Bin FAN ; Wei SHANG ; Yuan-Shuai HUANG ; De-Qing WANG
Journal of Experimental Hematology 2022;30(3):877-883
OBJECTIVE:
To establish a new method for synthesizing Lewis blood group antigens, that is, the mimotopes of Lewis blood group antigens were screened by using an alpaca phage display nanobody library.
METHODS:
We selected mimotopes of the Lewis a (lea) antigen by affinity panning of an alpaca phage display nanobody library using a monoclonal anti-lea antibody. Enzyme-linked immunosorbent assay (ELISA) was used to test the affinity of the positive clones for the monoclonal anti-lea antibody, and the high-affinity positive clones were selected for sequencing and synthesis. Finally, the sensitivity, specificity and reactivity of the synthesized lea mimotope in clinical samples were verified by ELISA.
RESULTS:
A total of 96 phage clones were randomly selected, and 24 were positive. Fourteen positive clones with the highest affinity were selected for sequencing. The result showed that there were 5 different sequences, among which 3 sequences with the highest frequency, largest difference and highest affinity were selected for expression and synthesis. The sensitivity and specificity of lea mimic antigen by ELISA showed that, the minimum detection limit of gel microcolumn assay (GMA) and ELISA method were 25 times different, and the lea mimic antigen had no cross reacted with the other five unrelated monoclonal antibodies(P<0.001). Finally, 30 clinical plasma samples were analyzed. The mean absorbance of the 15 positive plasma samples was significantly higher than that of the 15 negative plasma samples (P=0.02). However, the positive signal values of the clinical samples were much lower than those of the monoclonal antibodies.
CONCLUSION
A new method of screening lea mimic antigen by using alpaca phage nanoantibody library has been established, which is expected to realize the screening of lea mimotopes, thus realizing the application of high-sensitivity detection methods such as ELISA and chemiluminescence in blood group antibody identification.
Animals
;
Antibodies, Monoclonal
;
Antineoplastic Agents, Immunological
;
Bacteriophages
;
Blood Group Antigens
;
Camelids, New World
;
Enzyme-Linked Immunosorbent Assay/methods*
;
Epitopes
;
Humans
;
Lewis Blood Group Antigens
;
Peptide Library
7.Research advances on the interaction between Pseudomonas aeruginosa bacteriophages and the host.
Xi SHI ; Zhuo ZENG ; Yi Ming ZHANG ; Zi Chen YANG ; Yi Zhi PENG
Chinese Journal of Burns 2022;38(9):849-853
Pseudomonas aeruginosa is the most common pathogen of burn wound infection. It can encode a variety of virulence factors and is highly pathogenic, which can lead to poor prognosis and high mortality. In order to research a new method to combat Pseudomonas aeruginosa infection, researchers have observed a wide range of interactions between the bacteriophages and the host. Bacteriophages influence and even dominate the structure, movement, and metabolism of host bacteria through a variety of mechanisms, catalyze the evolution of the host, and are also an important factor in host environmental adaptability and pathogenicity. In this paper, the interaction between Pseudomonas aeruginosa bacteriophages and the host is reviewed from the single cell level and the population level. Understanding these interactions could provide new idea for the treatment of Pseudomonas aeruginosa clinical infections, provides a basis for future development of antimicrobial agents and guides the treatment of burn infections.
Bacteriophages
;
Burns/therapy*
;
Humans
;
Pseudomonas Infections/microbiology*
;
Pseudomonas Phages
;
Pseudomonas aeruginosa
;
Virulence Factors
8.The role of bacterial toxin-antitoxin systems in phage abortive infections.
Yang HAI ; Xiaoyu WANG ; Jianping XIE
Chinese Journal of Biotechnology 2022;38(9):3291-3300
Bacteria are often infected by large numbers of phages, and host bacteria have evolved diverse molecular strategies in the race with phages, with abortive infection (Abi) being one of them. The toxin-antitoxin system (TA) is expressed in response to bacterial stress, mediating hypometabolism and even dormancy, as well as directly reducing the formation of offspring phages. In addition, some of the toxins' sequences and structures are highly homologous to Cas, and phages even encode antitoxin analogs to block the activity of the corresponding toxins. This suggests that the failure of phage infection due to bacterial death in abortive infections is highly compatible with TA function, whereas TA may be one of the main resistance and defense forces for phage infestation of the host. This review summarized the TA systems involved in phage abortive infections based on classification and function. Moreover, TA systems with abortive functions and future use in antibiotic development and disease treatment were predicted. This will facilitate the understanding of bacterial-phage interactions as well as phage therapy and related synthetic biology research.
Anti-Bacterial Agents
;
Antitoxins/chemistry*
;
Bacteria/genetics*
;
Bacterial Proteins/chemistry*
;
Bacterial Toxins/genetics*
;
Bacteriophages/genetics*
;
Toxin-Antitoxin Systems/genetics*
9.Analysis of genomic information and biological characteristics of a bacteriophage against methicillin-resistant Staphylococcus aureus in patients with median sternal incision infection.
Jian ZHANG ; Rong Shuai YAN ; Zi Chen YANG ; Xi SHI ; Xiang LI ; Tong Chun MAO ; Yi Ming ZHANG
Chinese Journal of Burns 2022;38(2):137-146
Objective: To isolate and purify a bacteriophage against methicillin-resistant Staphylococcus aureus (MRSA), and to analyze its genomic information and biological characteristics. Methods: The experimental research methods were adopted. MRSA (hereinafter referred to as host bacteria) solution was collected from the wound of a 63-year-old female patient with the median sternum incision infection admitted to the Second Affiliated Hospital of Army Medical University (the Third Military Medical University). The bacteriophage, named bacteriophage SAP23 was isolated and purified from the sewage of the Hospital by sewage co-culture method and double-layer agar plate method, and the plaque morphology was observed. The morphology of bacteriophage SAP23 was observed by transmission electron microscope after phosphotungstic acid negative staining. The whole genome of bacteriophage SAP23 was sequenced with NovaSeq PE15 platform after its DNA was prepared by sodium dodecyl sulfonate/protease cleavage scheme, and genomic analysis including sequence assembly, annotation, and phylogenetic tree were completed. The bacteriophage SAP23 solution was co-incubated with the host bacterial solution for 4 h at the multiplicity of infection (MOI) of 10.000 0, 1.000 0, 0.100 0, 0.010 0, 0.001 0, and 0.000 1, respectively, and then the bacteriophage titer was measured by the drip plate method to select the optimal MOI, with here and the following sample numbers of 3. The bacteriophage SAP23 solution was co-incubated with the host bacterial solution at the optimal MOI for 5, 10, and 15 min, respectively, and the bacteriophage titer was measured by the same method as mentioned above to select the optimal adsorption time. After the bacteriophage SAP23 solution was co-incubated with the host bacterial solution at the optimal MOI for the optimal adsorption time, the bacteriophage titers were measured by the same method as mentioned above at 0 (immediately), 5, 10, 15, 20, 30, 40, 50, 60, 80, 100, and 120 min after culture, respectively, and a one-step growth curve was drawn. The bacteriophage SAP23 solution was incubated at 4, 37, 50, 60, 70, and 80 ℃ and pH 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12 for 1 h, respectively, to determine its stability. A total of 41 MRSA strains stored in the Department of Microbiology of Army Medical University (the Third Military Medical University) were used to determine the host spectrum of bacteriophage SAP23. Results: The bacteriophage SAP23 could form a transparent plaque on the host bacteria double-layer agar plate. The bacteriophage SAP23 has a polyhedral head with (88±4) nm in diameter and a tail with (279±21) nm in length and (22.6±2.6) nm in width. The bacteriophage SAP23 has a linear, double-stranded DNA with a full length of 151 618 bp and 11 681 bp long terminal repeats sequence in the sequence ends. There were 220 open reading frames predicted and the bacteriophage could encode 4 transfer RNAs, while no resistance genes or virulence factors were found. The annotation function of bacteriophage SAP23 genes could be divided into 5 groups. The GenBank accession number was MZ427930. According to the genomic collinearity analysis, there were 5 local collinear blocks in the whole genome between the bacteriophage SAP23 and the chosen 6 Staphylococcus bacteriophages, while within or outside the local collinear region, there were still some differences. The bacteriophage SAP23 belonged to the Herelleviridae family, Twortvirinae subfamily, and Kayvirus genus. The optimal MOI of bacteriophage SAP23 was 0.010 0, and the optimal adsorption time was 10 min. The bacteriophage SAP23 had a latent period of 20 min, and a growth phase of 80 min. The bacteriophage SAP23 was able to remain stable at the temperature between 4 and 37 ℃ and at the pH values between 4 and 9. The bacteriophage SAP23 could lyse 3 of the 41 tested MRSA strains. Conclusions: The bacteriophage SAP23 is a member of the Herelleviridae family, Twortvirinae subfamily, and Kayvirus genus. The bacteriophage SAP23 has a good tolerance for temperature and acid-base and a short latent period, and can lyse MRSA effectively. The bacteriophage SAP23 is a new type of potent narrow-spectrum bacteriophage without virulence factors and resistance genes.
Bacteriophages/genetics*
;
Genomics
;
Humans
;
Methicillin-Resistant Staphylococcus aureus/genetics*
;
Middle Aged
;
Phylogeny
;
Sternum
10.Screening and formulation of novel carriers for Xanthomonas bacteriophage to control bacterial leaf blight disease
Jian Liu ; Huiling Wang ; Suet Lin Chia ; Geok Hun Tan
Malaysian Journal of Microbiology 2022;18(5):490-504
Aims:
This study was aimed to evaluate the potential of several carriers to formulate the phages and retain their activity under various pH and temperature conditions.
Methodology and results:
The skim milk, rice flour, corn flour and CalnuXan (calcium and magnesium) as carriers to formulate the isolated phage to maintain its activity under extreme pH and temperature conditions. Two phages formulated with carriers retained their viability at pH 5, pH 7 and pH 9 compared to that of the unformulated phages. Besides, the formulated phages also retained a high titre compared to the unformulated phages when they were exposed to 37 °C and 45 °C. Based on the in vitro study of the formulation, it was applied in the glass house. The plant height, leaf chlorophyll and disease scoring were recorded and analyzed. In the glass house, the rice plant treated with formulated phages showed higher plant height and chlorophyll content than those treated with unformulated or untreated phages. Nonetheless, both formulated and unformulated protected the rice plant, which showed lower disease severity than the untreated group.
Conclusion, significance and impact of study
Phage therapy has been used for treating plant diseases caused by pathogenic bacteria. Despite their effectiveness in killing the pathogen in vitro, the results were not reproducible in the field. Bacteriophages (phages) are sensitive to environmental factors and infection efficiency was dropped when exposed to harmful environments. However, this study successfully formulated two novels Xanthomonas phages, as biocontrol agents against bacterial leaf blight (BLB) disease in rice.
Xanthomonas
;
Bacteriophages


Result Analysis
Print
Save
E-mail