1.Visualization method of type Ⅳ pili and its application in the study of pili function.
Chinese Journal of Biotechnology 2023;39(11):4534-4549
As an important protein structure on the surface of bacteria, type Ⅳ pili (TFP) is the sensing and moving organ of bacteria. It plays a variety of roles in bacterial physiology, cell adhesion, host cell invasion, DNA uptake, protein secretion, biofilm formation, cell movement and electron transmission. With the rapid development of research methods, technical equipment and pili visualization tools, increasing number of studies have revealed various functions of pili in cellular activities, which greatly facilitated the microbial single cell research. This review focuses on the pili visualization method and its application in the functional research of TFP, providing ideas for the research and application of TFP in biology, medicine and ecology.
Fimbriae, Bacterial/metabolism*
;
Bacterial Proteins/genetics*
;
Bacterial Physiological Phenomena
;
Bacterial Adhesion/physiology*
2.Prokaryotic expression and biological activities of the hemolysin BL subunit of a pathogenic Bacillus cereus of cattle origin.
Yunjiao CHEN ; Yunjiang HE ; Qinglei MENG ; Zhilin LIU ; Xin ZHANG ; Zelin JIA ; Jiayu CUI ; Xueli WANG
Chinese Journal of Biotechnology 2023;39(12):4939-4949
Bacillus cereus belongs to Gram-positive bacteria, which is widely distributed in nature and shows certain pathogenicity. Different B. cereus strains carry different subsets of virulence factors, which directly determine the difference in their pathogenicity. It is therefore important to study the distribution of virulence factors and the biological activity of specific toxins for precise prevention and control of B. cereus infection. In this study, the hemolysin BL triayl was expressed, purified, and characterized. The results showed that the bovine pathogenic B. cereus hemolysin BL could be expressed and purified in the prokaryotic expression system, and the bovine pathogenic B. cereus hemolysin BL showed hemolysis, cytotoxicity, good immunogenicity and certain immune protection in mice. In this study, the recombinant expression of hemolysin BL triayl was achieved, and the biological activity of hemolysin BL of bovine pathogenic ceroid spore was investigated. This study may facilitate further investigating the pathogenic mechanism of B. cereus hemolysin BL and developing a detection method for bovine pathogenic B. cereus disease.
Cattle
;
Animals
;
Mice
;
Bacterial Proteins/metabolism*
;
Bacillus cereus/metabolism*
;
Hemolysin Proteins/metabolism*
;
Virulence Factors/metabolism*
;
Enterotoxins/metabolism*
3.Targeted innovative design of Bt Cry toxin insecticidal mimics.
Chongxin XU ; Yuan LIU ; Xiao ZHANG ; Xianjin LIU
Chinese Journal of Biotechnology 2023;39(2):446-458
Bt Cry toxin is the mostly studied and widely used biological insect resistance protein, which plays a leading role in the green control of agricultural pests worldwide. However, with the wide application of its preparations and transgenic insecticidal crops, the resistance to target pests and potential ecological risks induced by the drive are increasingly prominent and attracting much attention. The researchers seek to explore new insecticidal protein materials that can simulate the insecticidal function of Bt Cry toxin. This will help to escort the sustainable and healthy production of crops, and relieve the pressure of target pests' resistance to Bt Cry toxin to a certain extent. In recent years, the author's team has proposed that Ab2β anti-idiotype antibody has the property of mimicking antigen structure and function based on the "Immune network theory" of antibody. With the help of phage display antibody library and specific antibody high-throughput screening and identification technology, Bt Cry toxin antibody was designed as the coating target antigen, and a series of Ab2β anti-idiotype antibodies (namely Bt Cry toxin insecticidal mimics) were screened from the phage antibody library. Among them, the lethality of Bt Cry toxin insecticidal mimics with the strongest activity was close to 80% of the corresponding original Bt Cry toxin, showing great promise for the targeted design of Bt Cry toxin insecticidal mimics. This paper systematically summarized the theoretical basis, technical conditions, research status, and discussed the development trend of relevant technologies and how to promote the application of existing achievements, aiming to facilitate the research and development of green insect-resistant materials.
Insecticides/metabolism*
;
Bacillus thuringiensis
;
Endotoxins/pharmacology*
;
Bacillus thuringiensis Toxins/metabolism*
;
Hemolysin Proteins/pharmacology*
;
Bacterial Proteins/chemistry*
;
Plants, Genetically Modified/genetics*
;
Pest Control, Biological
4.Efficient production of L-asparaginase in Bacillus licheniformis by optimizing expression elements and host.
Xinyuan YANG ; Yi RAO ; Mengxi ZHANG ; Jiaqi WANG ; Wenyuan LIU ; Dongbo CAI ; Shouwen CHEN
Chinese Journal of Biotechnology 2023;39(3):1096-1106
L-asparaginase (L-ASN) is widely applied in the treatment of malignant tumor and low-acrylamide food production, however, the low expression level hampers its application. Heterologous expression is an effective strategy to increase the expression level of target enzymes, and Bacillus is generally used as the host for efficient production of enzymes. In this study, the expression level of L-asparaginase in Bacillus was enhanced through optimization of expression element and host. Firstly, five signal peptides (SPSacC, SPAmyL, SPAprE, SPYwbN and SPWapA) were screened, among which SPSacC showed the best performance, reaching an activity of 157.61 U/mL. Subsequently, four strong promoters (P43, PykzA-P43, PUbay and PbacA) from Bacillus were screened, and tandem promoter PykzA-P43 showed the highest yield of L-asparaginase, which was 52.94% higher than that of control strain. Finally, three Bacillus expression hosts (B. licheniformis Δ0F3 and BL10, B. subtilis WB800) were investigated, and the maximum L-asparaginase activity, 438.3 U/mL, was reached by B. licheniformis BL10, which was an 81.83% increase compared with that of the control. This is also the highest level of L-asparaginase in shake flask reported to date. Taken together, this study constructed a B. licheniformis strain BL10/PykzA-P43-SPSacC-ansZ capable of efficiently producing L-asparaginase, which laid the foundation for industrial production of L-asparaginase.
Bacillus licheniformis/metabolism*
;
Asparaginase/genetics*
;
Bacillus/genetics*
;
Protein Sorting Signals
;
Promoter Regions, Genetic/genetics*
;
Bacillus subtilis/genetics*
;
Bacterial Proteins
5.Genetic and Phenotypic Variation of Campylobacter jejuni NCTC11168 Caused by flhA Mutation during Laboratory Passage.
Xiao Li CHEN ; Hao LIANG ; Peng Bo GUO ; Yi Xin GU ; Jia Qi WANG ; Hai Rui WANG ; Gui Lan ZHOU ; Zhu Jun SHAO ; Jian Zhong ZHANG ; Mao Jun ZHANG
Biomedical and Environmental Sciences 2023;36(7):604-613
OBJECTIVE:
Campylobacter jejuni NCTC11168 is commonly used as a standard strain for flagellar biosynthesis research. In this report, two distinguished phenotypic isolates (CJ1Z, flhA mutant strain, lawn; CJ2S, flhA complemented strain, normal colony) appeared during laboratory passages for NCTC11168.
METHODS:
Phenotypic assessments, including motility plates, transmission electron microscopy, biofilm formation assay, autoagglutination assay, and genome re-sequencing for these two isolates (CJ1Z, flhA mutant strain; CJ2S, flhA complemented strain) were carried out in this study.
RESULTS:
Transmission electron microscopy revealed that the flagellum was lost in CJ1Z. Phenotypic assessments and genome sequencing of the two isolates were performed in this study. The capacity for biofilm formation, colony auto-agglutination, and isolate motility was reduced in the mutant CJ1Z. Comparative genomic analysis indicated a unique native nucleotide insertion in flhA (nt, 2154) that caused the I719Y and I720Y mutations and early truncation in flhA.
CONCLUSION
FlhA has been found to influence the expression of flagella in C. jejuni. To the best of our knowledge, this is the first study to describe the function of the C-terminal of this protein.
Campylobacter jejuni/genetics*
;
Bacterial Proteins/metabolism*
;
Mutation
;
Biological Variation, Population
6.The fliL gene significantly affects the motility and sporulation abilities of Clostridioides difficile.
Jiangjian BAO ; Junyi YANG ; Ruirui SHAO ; Ting ZHANG ; Jian LIAO ; Yumei CHENG ; Zhizhong GUAN ; Xiaolan QI ; Zhenghong CHEN ; Wei HONG ; Guzhen CUI
Chinese Journal of Biotechnology 2023;39(4):1578-1595
Flagella are the main motility structure of Clostridioides difficile that affects the adhesion, colonization, and virulence of C. difficile in the human gastrointestinal tract. The FliL protein is a single transmembrane protein bound to the flagellar matrix. This study aimed to investigate the effect of the FliL encoding gene flagellar basal body-associated FliL family protein (fliL) on the phenotype of C. difficile. The fliL gene deletion mutant (ΔfliL) and its corresponding complementary strains (: : fliL) were constructed using allele-coupled exchange (ACE) and the standard molecular clone method. The differences in physiological properties such as growth profile, antibiotic sensitivity, pH resistance, motility, and spore production ability between the mutant and wild-type strains (CD630) were investigated. The ΔfliL mutant and the : : fliL complementary strain were successfully constructed. After comparing the phenotypes of strains CD630, ΔfliL, and : : fliL, the results showed that the growth rate and maximum biomass of ΔfliL mutant decreased than that of CD630. The ΔfliL mutant showed increased sensitivity to amoxicillin, ampicillin, and norfloxacin. Its sensitivity to kanamycin and tetracycline antibiotics decreased, and the antibiotic sensitivity partially returned to the level of CD630 strain in the : : fliL strain. Moreover, the motility was significantly reduced in the ΔfliL mutant. Interestingly, the motility of the : : fliL strain significantly increased even when compared to that of the CD630 strain. Furthermore, the pH tolerance of the ΔfliL mutant significantly increased or decreased at pH 5 or 9, respectively. Finally, the sporulation ability of ΔfliL mutant reduced considerably compared to the CD630 strain and recovered in the : : fliL strain. We conclude that the deletion of the fliL gene significantly reduced the swimming motility of C. difficile, suggesting that the fliL gene is essential for the motility of C. difficile. The fliL gene deletion significantly reduced spore production, cell growth rate, tolerance to different antibiotics, acidity, and alkalinity environments of C. difficile. These physiological characteristics are closely related to the survival advantage in the host intestine, which is correlated with its pathogenicity. Thus, we suggested that the function of the fliL gene is closely related to its motility, colonization, environmental tolerance, and spore production ability, which consequently affects the pathogenicity of C. difficile.
Humans
;
Clostridioides/metabolism*
;
Clostridioides difficile/metabolism*
;
Bacterial Proteins/metabolism*
;
Virulence
;
Anti-Bacterial Agents/metabolism*
7.Effects of ppk1 deletion on the drug susceptibility of uropathogenic Escherichia coli producing ESBLs.
Jing Yi OU ; Wan Shan CHEN ; Mei Jun CHEN ; Ling Zhai ZHAO ; Ling Hua LI ; Liang PENG ; Lan LIANG ; Ya Ling SHI
Chinese Journal of Preventive Medicine 2023;57(8):1238-1245
To investigate the effect and the mechanism of ppk1 gene deletion on the drug susceptibility of uropathogenic Escherichia coli producing extended-spectrum beta-lactamases (ESBLs-UPEC). The study was an experimental study. From March to April 2021, a strain of ESBLs-UPEC (genotype was TEM combined with CTX-M-14) named as UE210113, was isolated from urine sample of the patient with urinary tract infection in the Laboratory Department of Guangzhou Eighth People's Hospital, meanwhile its ppk1 gene knock-out strain Δpk1 and complemented strain Δpk1-C were constructed by suicide plasmid homologous recombination technique, which was used to study the effect of ppk1 gene on ESBLs-UPEC drug sensitivity and its mechanism. The drug susceptibility of UE210113, Δpk1, and Δpk1-C were measured by Vitek2 Compact System and broth microdilution method. The quantitative expression of ESBLs, outer membrane protein and multidrug efflux systems encoding genes of UE210113, Δpk1 and Δpk1-C were performed by using qRT-PCR analysis. By using two independent sample Mann-Whitney U test, the drug susceptibility results showed that, compared with UE210113 strain, the sensitivities of Δpk1 to ceftazidime, cefepime, tobramycin, minocycline and cotrimoxazole were enhanced (Z=-2.121,P<0.05;Z=-2.236,P<0.05;Z=-2.236,P<0.05;Z=-2.121,P<0.05), and the drug susceptibility of Δpk1-C restored to the same as which of UE210113 (Z=0,P>0.05). The expression levels of ESBLs-enconding genes blaTEM and blaCTX-M-14 in Δpk1 were significantly down-regulated compared with UE210113, but the expression was not restored in Δpk1-C. The expression of outer membrane protein gene omp F in Δpk1 was significantly up-regulated, while the expression of omp A and omp C were down-regulated. The results showed that the expression of multidrug efflux systems encoding genes tol C, mdt A and mdtG were down-regulated in Δpk1 compared with UE210113. The expression of all of the outer membrane protein genes and the multidrug efflux systems genes were restored in Δpk1-C. In conclusion,the lost of ppk1 gene can affect the expression of the outer membrane protein and multidrug efflux systems encoding genes of ESBLs-UPEC, which increase the sensitivity of ESBLs-UPEC to various drugs.
Humans
;
beta-Lactamases/metabolism*
;
Uropathogenic Escherichia coli/metabolism*
;
Urinary Tract Infections
;
Plasmids
;
Membrane Proteins/genetics*
;
Escherichia coli Infections
;
Microbial Sensitivity Tests
;
Anti-Bacterial Agents/pharmacology*
8.Effects of ppk1 deletion on the drug susceptibility of uropathogenic Escherichia coli producing ESBLs.
Jing Yi OU ; Wan Shan CHEN ; Mei Jun CHEN ; Ling Zhai ZHAO ; Ling Hua LI ; Liang PENG ; Lan LIANG ; Ya Ling SHI
Chinese Journal of Preventive Medicine 2023;57(8):1238-1245
To investigate the effect and the mechanism of ppk1 gene deletion on the drug susceptibility of uropathogenic Escherichia coli producing extended-spectrum beta-lactamases (ESBLs-UPEC). The study was an experimental study. From March to April 2021, a strain of ESBLs-UPEC (genotype was TEM combined with CTX-M-14) named as UE210113, was isolated from urine sample of the patient with urinary tract infection in the Laboratory Department of Guangzhou Eighth People's Hospital, meanwhile its ppk1 gene knock-out strain Δpk1 and complemented strain Δpk1-C were constructed by suicide plasmid homologous recombination technique, which was used to study the effect of ppk1 gene on ESBLs-UPEC drug sensitivity and its mechanism. The drug susceptibility of UE210113, Δpk1, and Δpk1-C were measured by Vitek2 Compact System and broth microdilution method. The quantitative expression of ESBLs, outer membrane protein and multidrug efflux systems encoding genes of UE210113, Δpk1 and Δpk1-C were performed by using qRT-PCR analysis. By using two independent sample Mann-Whitney U test, the drug susceptibility results showed that, compared with UE210113 strain, the sensitivities of Δpk1 to ceftazidime, cefepime, tobramycin, minocycline and cotrimoxazole were enhanced (Z=-2.121,P<0.05;Z=-2.236,P<0.05;Z=-2.236,P<0.05;Z=-2.121,P<0.05), and the drug susceptibility of Δpk1-C restored to the same as which of UE210113 (Z=0,P>0.05). The expression levels of ESBLs-enconding genes blaTEM and blaCTX-M-14 in Δpk1 were significantly down-regulated compared with UE210113, but the expression was not restored in Δpk1-C. The expression of outer membrane protein gene omp F in Δpk1 was significantly up-regulated, while the expression of omp A and omp C were down-regulated. The results showed that the expression of multidrug efflux systems encoding genes tol C, mdt A and mdtG were down-regulated in Δpk1 compared with UE210113. The expression of all of the outer membrane protein genes and the multidrug efflux systems genes were restored in Δpk1-C. In conclusion,the lost of ppk1 gene can affect the expression of the outer membrane protein and multidrug efflux systems encoding genes of ESBLs-UPEC, which increase the sensitivity of ESBLs-UPEC to various drugs.
Humans
;
beta-Lactamases/metabolism*
;
Uropathogenic Escherichia coli/metabolism*
;
Urinary Tract Infections
;
Plasmids
;
Membrane Proteins/genetics*
;
Escherichia coli Infections
;
Microbial Sensitivity Tests
;
Anti-Bacterial Agents/pharmacology*
9.Perifosine inhibits biofilm formation of Pseudomonas aeruginosa by interacting with PqsE protein.
Peng Fei SHE ; Lan Lan XU ; Ya Qian LIU ; Ze Hao LI ; Sha Sha LIU ; Yi Min LI ; Lin Ying ZHOU ; Yong WU
Chinese Journal of Preventive Medicine 2022;56(2):192-196
To explore the biofilm inhibitory efficacy of perifosine against Pseudomonas aeruginosa (P. aeruginos) and its mechanisms. Twenty-fourwell plate was used to form biofilms at the bottom and crystal violet staining was used to determine the biofilm inhibitory effects of perifosine against P. aeruginosa, the wells without perifosine was set as control group. Glass tubes combined with crystal violet staining was used to detect the gas-liqud interface related bioiflm inhibitory effects of perifosine, the wells without perifosine was set as control group. Time-growth curved was used to detect the effects of perifosine on the bacteial planktonic cells growth of P. aeruginosa, the wells without perifosine was set as control group. The interaction model between perifosine and PqsE was assessed by molecular docking assay. The inhibitory effects of perifosine on the catalytic activity of PqsE was determined by detection the production of thiols, the wells without perifosine was set as control group. Binding affinity between perifosine and PqsE was detected by plasma surface resonance. The biofims at the bottom of the microplates and air-liquid interface were effectively inhibited by perifosine at the concentration of 4-8 μg/ml. There was no influence of perifosine on the cells growth of P. aeruginosa. The resuts of molecular docking assay indicates that perifosine could interacted with PqsE with the docking score of -10.67 kcal/mol. Perifosine could inhibit the catalytic activity of PqsE in a dose-dependent manner. The binding affinity between perifosine and PqsE was comfirmed by plasma surface resonance with KD of 6.65×10-5mol/L. Perifosine could inhibited the biofilm formation of P. aeruginosa by interacting with PqsE.
Anti-Bacterial Agents/pharmacology*
;
Bacterial Proteins/metabolism*
;
Biofilms
;
Molecular Docking Simulation
;
Phosphorylcholine/analogs & derivatives*
;
Pseudomonas aeruginosa/metabolism*
;
Quorum Sensing
10.Transcriptomic analysis of the ΔPaLoc mutant of Clostridioides difficile and verification of its toxicity.
Gu Zhen CUI ; Qing Shuai ZHOU ; Qin Quan CHENG ; Feng Qin RAO ; Yu Mei CHENG ; Yan TIAN ; Ting ZHANG ; Zheng Hong CHEN ; Jian LIAO ; Zhi Zhong GUAN ; Xiao Lan QI ; Qi WU ; Wei HONG
Chinese Journal of Preventive Medicine 2022;56(5):601-608
Objective: Comparative analyses of wild-type Clostridioides difficile 630 (Cd630) strain and pathogenicity locus (PaLoc) knockout mutant (ΔPaLoc) by using RNA-seq technology. Analysis of differential expression of Cd630 wild-type strain and ΔPaLoc mutant strain and measurement of its cellular virulence changes. Lay the foundation for the construction of an toxin-attenuated vaccine strain against Clostridioides difficile. Methods: Analysis of Cd630 and ΔPaLoc mutant strains using high-throughput sequencing (RNA-seq). Clustering differentially expressed genes and screening differentially expressed genes by DESeq software. Further analysis of differential genes using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Finally, cytotoxicity assays of ΔPaLoc and Cd630 strains were performed in the African monkey kidney epithelial cell (Vero) and the human colonic cell (Caco-2) lines. Results: The transcriptome data showed that the ΔPaLoc mutant toxin genes tcdA and tcdB were not transcribed. Compared to the wild-type strain, CD630_36010, CD630_020910,CD630_02080 and cel genes upregulated 17.92,11.40,8.93 and 7.55 fold, respectively. Whereas the hom2 (high serine dehydrogenase), the CD630_15810 (spore-forming protein), CD630_23230 (zinc-binding dehydrogenase) and CD630_23240 (galactitol 1-phosphate 5-dehydrogenase) genes were down-regulated by 0.06, 0.075, 0.133 and 0.183 fold, respectively. The GO and KEGG enrichment analyses showed that the differentially transcribed genes in ΔPaLoc were enriched in the density-sensing system, ABC transport system, two-component system, phosphotransferase (PTS) system, and sugar metabolism pathway, as well as vancomycin resistance-related pathways. Cytotoxicity assays showed that the ΔPaLoc mutant strain lost its virulence to Vero and Caco-2 cells compared to the wild-type Cd630 strain. Conclusion: Transcriptional sequencing analysis of the Cd630 and ΔPaLoc mutant strains showed that the toxin genes were not transcribed. Those other differential genes could provide a reference for further studies on the physiological and biochemical properties of the ΔPaLoc mutant strain. Cytotoxicity assays confirmed that the ΔPaLoc mutant lost virulence to Vero and Caco-2 cells, thus laying the foundation for constructing an toxin-attenuated vaccine strain against C. difficile.
Bacterial Proteins/metabolism*
;
Bacterial Toxins/metabolism*
;
Caco-2 Cells
;
Clostridioides
;
Clostridioides difficile/genetics*
;
Humans
;
Oxidoreductases/metabolism*
;
Transcriptome
;
Vaccines, Attenuated

Result Analysis
Print
Save
E-mail