1.Evaluation of the growth medium of a new ice-nucleating-active Pseudomonas: A response surface methodology approach
Najmeh Soveizi ; Ali Mohammad Latifi ; Sedigheh Mehrabian ; Abbas Akhavan Sepahi
Malaysian Journal of Microbiology 2021;17(5):482-492
Aims:
Attention to ice nucleation proteins has increased for more than two decades. Ice nucleation proteins have been utilized for artificial snow-making known as Snowmax™, cryopreservation of tissues and cells, and cloud condensation nuclei. There is a direct relationship between bacterial growth and ice nucleation activity. Therefore, the optimization of the culture medium seems necessary.
Methodology and results:
The effect of different carbon and nitrogen sources on the growth of a new native Pseudomonas sp. IRL.INP1 was evaluated by using fractional factorial design, the path of the steepest ascent experiment and central composite design. Ice nucleation activity, biomass and whole-cell protein were identified afterward. The model predicted by response surface methodology indicated that the maximum bacterial growth was observed when sucrose, ammonium sulfate [(NH4)2SO4] and manganese (II) (Mn2+) were utilized at 12.46 g/L, 321.97 mg/L and 938.09 µM, respectively. Also, 1.10 g/L biomass and 0.85 µg/µL whole-cell proteins were gained, and the isolate showed ice nucleation activity 31 sec sooner after optimization.
Conclusion, significance and impact of study
Ice nucleation proteins are growth-dependent and the growth condition optimization leads to higher bacterial cells growth. Therefore, best bacterial growth was obtained when proper carbon and nitrogen sources were used, and ice nucleation activity was observed in shorter time. This is the first study concerning ice nucleation activity optimization using different carbon and nitrogen sources.
Gram-Negative Bacteria--growth &
;
development
;
Pseudomonas
2.Indigenous bacterial community of heavy metal tolerance in the rhizosphere soils of Mimosa pudica naturally growing on an ex-tin mining area
Saidu Abdullahi ; Hazzeman Haris ; Kamarul Zaman Zarkasi ; Hamzah Ghazali Amir
Malaysian Journal of Microbiology 2021;17(6):690-700
Aims:
The purpose of this research was to explore the composition and genomic functions of bacterial community inhabiting the rhizosphere of Mimosa pudica, which were naturally growing on tailing and non-tailing soils of an ex-tin mining area.
Methodology and results:
DNA were extracted from rhizosphere soils and PCR targeting the hypervariable region V3-V4 was carried out by Illumina 16S metagenomic library. Libraries were sequenced using Illumina MiSeq. The Operational Taxonomic Units (OTUs) were assigned to 23 bacterial phyla, 72 classes, 165 orders, 248 families and 357 genera. The most represented and dominant phylum was Proteobacteria, with an average abundance value of 41.2%. The most represented genera included Paraburkholderia, Bradyrhizobium, Bacillus, Candidatus, Acidothermus, Acidibacter and Nitrospira. Non-tailing soils had more number and richness of species while the tailings had more diversity of species. The metagenomes accommodate suspected genes for heavy metal tolerance of microbes (As, Cr, Co, Zn, Ni, Cu, Cd, Fe and Hg) and microbial plant-growth-promoting traits for hyperaccumulator plants (synthesis of indole acetic acid (IAA), siderophore and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase; solubilization of phosphate and potassium and nitrogen fixation).
Conclusion, significance and impact of study
Bacteria and predicted genes discovered could be part of major factors influencing growth of M. pudica in heavy metal-contaminated soils. The study provides the first report and a basis into the bacterial community associated with M. pudica in ex-tin mining soils from the studied geographical location. The findings also provide fundamental knowledge on phytoremediation potential of heavy metal contaminated soils involving indigenous beneficial microbial populations.
Bacteria
;
Rhizosphere
;
Mimosa
;
Plant Growth Regulators
3.Screening and evaluation of saline-alkali-tolerant and growth-promoting bacteria.
Xue SUN ; Yonghua DONG ; Na WANG ; Wenhui CUI ; Xianyan LIAO ; Li LIU
Chinese Journal of Biotechnology 2020;36(7):1356-1364
Salinity is the most important factor for the growth of crops. It is an effective method to alleviate the toxic effect caused by salt stress using saline-alkali-tolerant and growth-promoting bacteria in agriculture. Seven salt-tolerant bacteria were screened from saline-alkali soil, and the abilities of EPS production, alkalinity reduction and IAA production of the selected strains were investigated. A dominant strain DB01 was evaluated. The abilities of EPS production, alkalinity reduction and IAA production of strain DB01 were 0.21 g/g, 8.7% and 8.97 mg/L, respectively. The isolate was identified as Halomonas aquamarina by partial sequencing analysis of its 16S rRNA genes, and had the ability to inhibit the growth of Fusarium oxysporum f. sp., Alternaria solani, Phytophthora sojae and Rhizoctonia cerealis. It also could promote root length and germination rate of wheat seedlings under salt stress. Halomonas aquamarina can provide theoretical basis for the development of soil microbial resources and the application in saline-alkali soil improvement.
Alkalies
;
metabolism
;
Bacteria
;
drug effects
;
genetics
;
Halomonas
;
genetics
;
Plant Roots
;
microbiology
;
RNA, Ribosomal, 16S
;
genetics
;
Salt Tolerance
;
genetics
;
Seedlings
;
growth & development
;
microbiology
;
Soil
;
chemistry
;
Soil Microbiology
;
Triticum
;
microbiology
4.Research advances in the effect of bioactive substances in breast milk on the growth and development of infants.
Meng ZHANG ; Wen-Xing LI ; Jun TANG
Chinese Journal of Contemporary Pediatrics 2020;22(1):82-86
There are various types of bioactive substances in human breast milk, such as active proteins, growth factors, cytokines, oligosaccharides, probiotics and cells. Many studies have shown that these bioactive substances in breast milk have important protective effects on infant growth and development, including anti-bacterial and anti-viral effects and the promotion of infant growth and development and immunologic maturation. They can also reduce the incidence rate of infectious diseases in infants, improve neural development in preterm infants, and reduce the risk of obesity and diabetes in future. However, there is still no clinical evidence for the effects of several active substances in breast milk, and their immunoregulatory mechanism remains unclear. Therefore, further studies are needed for clarification.
Bacteria
;
Female
;
Growth and Development
;
Humans
;
Infant
;
Infant, Newborn
;
Infant, Premature
;
Milk, Human
;
Probiotics
5.Effect of Gastrodiae elata-Phallus impudicus sequential planting pattern on soil microbial community structure.
Jiao XU ; Xiao-Hong OU ; Wei-Ke JIANG ; Qing-Song YUAN ; Yan-Hong WANG ; Jie YANG ; Da-Hui LIU ; Xiao WANG ; Guang-Wen ZHANG ; Cheng PAN ; Tao ZHOU
China Journal of Chinese Materia Medica 2020;45(3):463-471
Gastrodia elata is a heterotrophic plant that needed to be symbiotic with Armillaria. The obstacle of continuous cropping in G. elata is serious during the G. elata cultivation, and the mechanism of obstacle in G. elata continuous cropping had not been solved. The planting of G. elata-Phallus impudicus is a new sequential planting pattern adopted in Guizhou province, but the effect of the cultivation on soil microbial community structure is still unclear. In this study, we collected four soil samples for the research including the soil without planted G. elata as control(CK), rhizosphere soil samples tightly adhering to the G. elata surface(GE), rhizosphere soil samples tightly adhering to Armillaria which was symbiotic with G. elata(AGE), the rhizosphere soil of P. impudicus planting after G. elata cultivation(PI). In order to explore the mechanism, the research study on the soil of G. elata-P. impudicus by using ITS and 16 S rDNA high-throughput sequencing technologies to detect soil microbial community structure including fungi and bacteria in the soil of CK, AGE, GE and PI. OTU clustering and PCA analysis of soil samples showed that the soil microbial diversity was relatively similar in AGE and GE. And the soil microbial in PI and CK clustered together. The results showed that AGE and GE had similar soil microbial diversity, as well as PI and CK. Compared with CK, the soil microbial diversity and abundance in AGE and GE were significantly increased. But the microbial diversity and abundance decreased in PI compared with AGE and GE. The annotation indicated that the abundance of Basidiomycota, Acidobacteria and Chloroflexi decreased, and that of Ascomycota, Zygomycota and Proteobacteria increased in AGE and GE compared with CK. In contrast to AGE and GE, PI was the opposite. The abundance of Basidiomycota, Acidobacteria and Chloroflexi increased in PI compared with AGE and GE. The abundance of microorganisms in the soil of PI and CK was similar. In addition, the co-culture of Armillaria and P. impudicus indicated that P. impudicus had obvious antagonistic effects on the growth of Armillaria. Therefore, it is speculated that the mechanism of G. elata-P. impudicus planting pattern related to the change of soil microbial. And we supposed that P. impudicus might inhibit the growth of Armillaria and change the soil microbial community structure and the abundance of soil microbial. And the soil microbial community structure was restored to a state close to that of uncultivated G. elata. Thus, the structure of soil microbial community planting G. elata could be restored by P. impudicus planting.
Agaricales/growth & development*
;
Bacteria/classification*
;
Fungi/classification*
;
Gastrodia/microbiology*
;
Microbiota
;
Rhizosphere
;
Soil Microbiology
6.Antioxidant Potential of Four Species of Natural Product and Therapeutic Strategies for Cancer through Suppression of Viability in the Human Multiple Myeloma Cell Line U266.
Fatma GUESMI ; Issam SAIDI ; Rawya SOUSSI ; Najla HFAIEDH ; Ahmed LANDOULSI
Biomedical and Environmental Sciences 2019;32(1):22-33
OBJECTIVE:
This research aimed to evaluate the protective effects of bioactive compounds such as phenolic acids, flavonoids, and tannins present in four species extracted with methanol.
METHODS:
The total phenolic content of the methanolic extracts was measured spectrophotometrically. The effect of the extracts on cell viability in U266 cells was measured. The effects of extracts on free radical scavenging were assessed by the DPPH test and FRAP assay. Antibacterial effects of the natural products in this report were investigated by using the disc diffusion method.
RESULTS:
Our results clearly demonstrated that the methanolic extracts were characterized by a high amount of phenolic compounds. It has been speculated that ME-TA and ME-TAl exhibit a significant (P < 0.05) and dose-dependent antiradical potential. The exposure of cells to high doses of extracts almost completely suppressed cell growth in vitro. ME-TA and ME-TAl showed significant cytotoxic effects at a concentration of 100 μg/mL in the U266 cell line. ME-TAl and ME-CF inhibited the growth of B. subtilis and S. aureus, respectively, to the same extent as 10 μg/μL of chloramphenicol at a concentration of 1 mg/mL.
CONCLUSION
Overall, these results suggest that plants used in traditional medicine have a novel application as free radical scavengers, bacterial inhibitors and tumor suppressors.
Anti-Bacterial Agents
;
pharmacology
;
Antineoplastic Agents, Phytogenic
;
pharmacology
;
Antioxidants
;
pharmacology
;
Bacteria
;
drug effects
;
growth & development
;
Biological Products
;
pharmacology
;
Cell Line, Tumor
;
Cell Survival
;
drug effects
;
Humans
;
Magnoliopsida
;
chemistry
;
Multiple Myeloma
;
Phytochemicals
;
analysis
;
pharmacology
;
Plant Extracts
;
chemistry
;
pharmacology
7.Therapeutic Effects of Synthetic Antimicrobial Peptides, TRAIL and NRP1 Blocking Peptides in Psoriatic Keratinocytes
Sunhyo RYU ; Lindsey BROUSSARD ; Chakyung YOUN ; Brendon SONG ; David NORRIS ; Cheryl A ARMSTRONG ; Beomjoon KIM ; Peter I SONG
Chonnam Medical Journal 2019;55(2):75-85
Psoriasis is a chronic, recurrent, heterogeneous, cutaneous inflammatory skin disease for which there is no cure. It affects approximately 7.5 million people in the United States. Currently, several biologic agents that target different molecules implicated in the pathogenic processes of psoriasis are being assessed in diverse clinical studies. However, relapse usually occurs within weeks or months, meaning there is currently no cure for psoriasis. Therefore, recent studies have discovered diverse new potential treatments for psoriasis: inhibitors of bacteria such as Staphylococcus aureus, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and neuropilin 1 (NRP1). A promising approach that has recently been described involves modifying antimicrobial peptides to develop new cutaneous anti-bacterial agents that target inflammatory skin disease induced by Staphylococcus. Increased expression of TRAIL and its death receptors DR4 and DR5 has been implicated in the pathogenesis of plaque psoriasis. In addition, TRAIL has the ability to inhibit angiogenesis by inducing endothelial cell death and by negative regulation of VEGF-induced angiogenesis via caspase-8-mediated enzymatic and non-enzymatic functions. Since NRP1 regulates angiogenesis induced by multiple signals, including VEGF, ECM and semaphorins, and also initiates proliferation of keratinocytes through NF-κB signaling pathway in involved psoriatic skin, targeting NRP1 pathways may offer numerous windows for intervention in psoriasis. In this review, we will focus on the current knowledge about the emerging role of synthetic antimicrobial peptides, TRAIL and NRP1 blocking peptides in the pathogenesis and treatment of psoriasis.
Anti-Bacterial Agents
;
Bacteria
;
Biological Factors
;
Endothelial Cells
;
Keratinocytes
;
Necrosis
;
Neuropilin-1
;
Peptides
;
Psoriasis
;
Receptors, Death Domain
;
Recurrence
;
Semaphorins
;
Skin
;
Skin Diseases
;
Staphylococcus
;
Staphylococcus aureus
;
Therapeutic Uses
;
TNF-Related Apoptosis-Inducing Ligand
;
United States
;
Vascular Endothelial Growth Factor A
8.Disruption of the Gut Ecosystem by Antibiotics
Yonsei Medical Journal 2018;59(1):4-12
The intestinal microbiota is a complex ecosystem consisting of various microorganisms that expands human genetic repertoire and therefore affects human health and disease. The metabolic processes and signal transduction pathways of the host and intestinal microorganisms are intimately linked, and abnormal progression of each process leads to changes in the intestinal environment. Alterations in microbial communities lead to changes in functional structures based on the metabolites produced in the gut, and these environmental changes result in various bacterial infections and chronic enteric inflammatory diseases. Here, we illustrate how antibiotics are associated with an increased risk of antibiotic-associated diseases by driving intestinal environment changes that favor the proliferation and virulence of pathogens. Understanding the pathogenesis caused by antibiotics would be a crucial key to the treatment of antibiotic-associated diseases by mitigating changes in the intestinal environment and restoring it to its original state.
Anti-Bacterial Agents/pharmacology
;
Bacteria/drug effects
;
Bacteria/growth & development
;
Dysbiosis/microbiology
;
Gastrointestinal Microbiome/drug effects
;
Humans
;
Intestines/drug effects
;
Intestines/microbiology
;
Symbiosis/drug effects
9.Evaluation of in vitro antioxidant, antiglycation and antimicrobial potential of indigenous Myanmar medicinal plants.
The Su MOE ; Htet Htet WIN ; Thin Thin HLAING ; War War LWIN ; Zaw Min HTET ; Khin Mar MYA
Journal of Integrative Medicine 2018;16(5):358-366
OBJECTIVEMyanmar has a long history of using medicinal plants for treatment of various diseases. To the best of our knowledge there are no previous reports on antiglycation activities of medicinal plants from Myanmar. Therefore, this study was aimed to evaluate the antioxidant, antiglycation and antimicrobial properties of 20 ethanolic extracts from 17 medicinal plants indigenous to Myanmar.
METHODSIn vitro scavenging assays of 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), superoxide (SO) radicals were used to determine the antioxidant activities. Folin-Ciocalteu's method was performed to determine the total phenolic content. Antiglycation and antimicrobial activities were detected by bovine serum albumin-fluorescent assay and agar well diffusion method.
RESULTSTerminalia chebula Retz. (Fruit), containing the highest total phenolic content, showed high antioxidant activities with inhibition of 77.98% ± 0.92%, 88.95% ± 2.42%, 88.56% ± 1.87% and 70.74%± 2.57% for DPPH, NO, SO assays and antiglycation activity respectively. It also showed the antimicrobial activities against Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans with inhibition zone of 19, 18, 17, 25 and 15 mm, respectively. Garcinia mangostana Linn. showed the strongest activities for SO and antiglycation assays with inhibition of 93.68% ± 2.63% and 82.37% ± 1.78%. Bark of Melia sp. was the best NO radical scavenger with inhibition rate of 89.39%± 0.60%.
CONCLUSIONThe results suggest that these plants are potential sources of antioxidants with free radical-scavenging and antiglycation activities and could be useful for decreasing the oxidative stress and glycation end-product formation in glycation-related diseases.
Anti-Bacterial Agents ; analysis ; pharmacology ; Anti-Infective Agents ; analysis ; pharmacology ; Antioxidants ; analysis ; pharmacology ; Bacteria ; drug effects ; growth & development ; Biphenyl Compounds ; metabolism ; Candida albicans ; drug effects ; growth & development ; Fruit ; Garcinia ; chemistry ; Glycation End Products, Advanced ; metabolism ; Humans ; Magnoliopsida ; chemistry ; Medicine, Traditional ; Melia ; chemistry ; Myanmar ; Nitric Oxide ; metabolism ; Oxidative Stress ; drug effects ; Phenols ; analysis ; pharmacology ; Phytotherapy ; Picrates ; metabolism ; Plant Bark ; Plant Extracts ; chemistry ; pharmacology ; Plants, Medicinal ; Superoxides ; Terminalia ; chemistry
10.The Role of IL-17 in a Lipopolysaccharide-Induced Rhinitis Model.
Jun Sang BAE ; Ji Hye KIM ; Eun Hee KIM ; Ji Hun MO
Allergy, Asthma & Immunology Research 2017;9(2):169-176
PURPOSE: Lipopolysaccharide (LPS) is a cell wall component of Gram-negative bacteria and important for pro-inflammatory mediators. This study aimed to establish a rhinitis model using ovalbumin (OVA) and LPS in order to evaluate the role of interleukin (IL)-17 in the pathogenesis of an LPS-induced non-eosionophilic rhinitis model. METHODS: Mice were divided into 4 groups and each group consisted of 10 mice (negative control group, allergic rhinitis model group, 1-µg LPS treatment group, and 10-µg LPS treatment group). BALB/c mice were sensitized with OVA and 1 or 10 µg of LPS, and challenged intranasally with OVA. Multiple parameters of rhinitis were also evaluated to establish the LPS-induced rhinitis model. IL-17 knockout mice were used to check if the LPS-induced rhinitis model were dependent on IL-17. Eosinophil and neutrophil infiltration, and mRNA and protein expression profiles of cytokine in nasal mucosa or spleen cell culture were evaluated using molecular, biochemical, histopathological, and immunohistological methods. RESULTS: In the LPS-induced rhinitis model, neutrophil infiltration increased in the nasal mucosa, and systemic and nasal IL-17 and interferon-gamma (IFN-γ) levels also increased as compared with the OVA-induced allergic rhinitis model. These findings were LPS-dose-dependent. In IL-17 knockout mice, those phenotypes (neutrophil infiltration, IL-17, and IFN-γ) were reversed, showing IL-17 dependency of LPS-induced rhinitis. The expression of vascular endothelial growth factor (VEGF), an important mediator for inflammation and angiogenesis, decreased in IL-17 knockout mice, showing the relationship between IL-17 and VEGF. CONCLUSIONS: This study established an LPS-induced rhinitis model dependent on IL-17, characterized by neutrophil infiltration and increased expression of IL-17.
Animals
;
Cell Culture Techniques
;
Cell Wall
;
Eosinophils
;
Gram-Negative Bacteria
;
Inflammation
;
Interferon-gamma
;
Interleukin-17*
;
Interleukins
;
Mice
;
Mice, Knockout
;
Nasal Mucosa
;
Neutrophil Infiltration
;
Ovalbumin
;
Ovum
;
Phenotype
;
Rhinitis*
;
Rhinitis, Allergic
;
RNA, Messenger
;
Spleen
;
Vascular Endothelial Growth Factor A


Result Analysis
Print
Save
E-mail