1.Using transporter to enhance the acid tolerance of Bacillus coagulans DSM1.
Jing LI ; Yu WANG ; Bo YU ; Limin WANG ; Jiansong JU
Chinese Journal of Biotechnology 2023;39(8):3394-3405
As the precursor of polylactic acid (PLA), optically pure l-lactic acid production is attracting increasing attention. The accumulation of lactic acid during fermentation inhibits strain growth. Therefore, it is necessary to improve the acid tolerance of lactic acid producers. In this study, comparative transcriptomic analysis was performed to investigate the effects of transporters on lactic acid tolerance of Bacillus coagulans DSM1, which is an l-lactic acid producer. The genes with more than two-fold up-regulation in transcriptional profile were further verified using real-time PCR. The transcriptional levels of RS06895, RS10595, RS10595, RS00500, RS00500, RS10635 and RS10635 were enhanced during lactic acid fermentation. Strain overexpressing RS10595 exhibited a retarded cell growth and low lactic acid production at pH 6.0, but an improved lactic acid production at pH 4.6. This study may facilitate the investigation of the acid tolerance mechanism in B. coagulans DSM1, as well as the construction of efficient lactic acid producers.
Bacillus coagulans/genetics*
;
Lactic Acid
;
Cell Cycle
;
Cell Proliferation
;
Fermentation
2.Prokaryotic expression and biological activities of the hemolysin BL subunit of a pathogenic Bacillus cereus of cattle origin.
Yunjiao CHEN ; Yunjiang HE ; Qinglei MENG ; Zhilin LIU ; Xin ZHANG ; Zelin JIA ; Jiayu CUI ; Xueli WANG
Chinese Journal of Biotechnology 2023;39(12):4939-4949
Bacillus cereus belongs to Gram-positive bacteria, which is widely distributed in nature and shows certain pathogenicity. Different B. cereus strains carry different subsets of virulence factors, which directly determine the difference in their pathogenicity. It is therefore important to study the distribution of virulence factors and the biological activity of specific toxins for precise prevention and control of B. cereus infection. In this study, the hemolysin BL triayl was expressed, purified, and characterized. The results showed that the bovine pathogenic B. cereus hemolysin BL could be expressed and purified in the prokaryotic expression system, and the bovine pathogenic B. cereus hemolysin BL showed hemolysis, cytotoxicity, good immunogenicity and certain immune protection in mice. In this study, the recombinant expression of hemolysin BL triayl was achieved, and the biological activity of hemolysin BL of bovine pathogenic ceroid spore was investigated. This study may facilitate further investigating the pathogenic mechanism of B. cereus hemolysin BL and developing a detection method for bovine pathogenic B. cereus disease.
Cattle
;
Animals
;
Mice
;
Bacterial Proteins/metabolism*
;
Bacillus cereus/metabolism*
;
Hemolysin Proteins/metabolism*
;
Virulence Factors/metabolism*
;
Enterotoxins/metabolism*
3.Targeted innovative design of Bt Cry toxin insecticidal mimics.
Chongxin XU ; Yuan LIU ; Xiao ZHANG ; Xianjin LIU
Chinese Journal of Biotechnology 2023;39(2):446-458
Bt Cry toxin is the mostly studied and widely used biological insect resistance protein, which plays a leading role in the green control of agricultural pests worldwide. However, with the wide application of its preparations and transgenic insecticidal crops, the resistance to target pests and potential ecological risks induced by the drive are increasingly prominent and attracting much attention. The researchers seek to explore new insecticidal protein materials that can simulate the insecticidal function of Bt Cry toxin. This will help to escort the sustainable and healthy production of crops, and relieve the pressure of target pests' resistance to Bt Cry toxin to a certain extent. In recent years, the author's team has proposed that Ab2β anti-idiotype antibody has the property of mimicking antigen structure and function based on the "Immune network theory" of antibody. With the help of phage display antibody library and specific antibody high-throughput screening and identification technology, Bt Cry toxin antibody was designed as the coating target antigen, and a series of Ab2β anti-idiotype antibodies (namely Bt Cry toxin insecticidal mimics) were screened from the phage antibody library. Among them, the lethality of Bt Cry toxin insecticidal mimics with the strongest activity was close to 80% of the corresponding original Bt Cry toxin, showing great promise for the targeted design of Bt Cry toxin insecticidal mimics. This paper systematically summarized the theoretical basis, technical conditions, research status, and discussed the development trend of relevant technologies and how to promote the application of existing achievements, aiming to facilitate the research and development of green insect-resistant materials.
Insecticides/metabolism*
;
Bacillus thuringiensis
;
Endotoxins/pharmacology*
;
Bacillus thuringiensis Toxins/metabolism*
;
Hemolysin Proteins/pharmacology*
;
Bacterial Proteins/chemistry*
;
Plants, Genetically Modified/genetics*
;
Pest Control, Biological
4.Antagonistic activity and application of Bacillus velezensis strain Bv-303 against rice bacterial-blight disease caused by Xanthomonas oryzae pv. oryzae.
Xia LIU ; Zhexiao LU ; Zicheng MA ; Tingting YU ; Haotian CHEN ; Lu WANG ; Xifeng CHEN
Chinese Journal of Biotechnology 2023;39(2):741-754
In this study, a new Bacillus velezensis strain Bv-303 was identified and its biocontrol effect against rice bacterial-blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) was investigated. Cell-free supernatant (CFS) of strain Bv-303 under different growth conditions were prepared to test the antagonistic activity and stability against Xoo by the Oxford-cup method in vitro. The antibacterial effect of strain Bv-303 to BB disease in rice were further analyzed in vivo by spraying the cell-culture broth (CCB), CFS and cell-suspension water (CSW), respectively, on the rice leaves inoculated with Xoo. Additionally, rice seeds germination rate and seedling growth under the strain Bv-303 CCB treatment were tested. The results showed that the strain Bv-303 CFS significantly inhibited Xoo growth by 85.7%‒88.0% in vitro, which was also stable under extreme environment conditions such as heat, acid, alkali and ultraviolet light. As tested in vivo, spraying the CCB, CFS or CSW of strain Bv-303 on the Xoo-infected leaves enhanced rice plant resistance to BB disease, with CCB showing the highest increase (62.7%) in disease-resistance. Notably, CCB does not have negative effects on rice seed germination and seedling growth. Therefore, strain Bv-303 has great potential for biocontrol of the rice BB disease.
Oryza
;
Fatigue Syndrome, Chronic
;
Bacillus
;
Xanthomonas
;
Plant Diseases/microbiology*
5.Efficient production of L-asparaginase in Bacillus licheniformis by optimizing expression elements and host.
Xinyuan YANG ; Yi RAO ; Mengxi ZHANG ; Jiaqi WANG ; Wenyuan LIU ; Dongbo CAI ; Shouwen CHEN
Chinese Journal of Biotechnology 2023;39(3):1096-1106
L-asparaginase (L-ASN) is widely applied in the treatment of malignant tumor and low-acrylamide food production, however, the low expression level hampers its application. Heterologous expression is an effective strategy to increase the expression level of target enzymes, and Bacillus is generally used as the host for efficient production of enzymes. In this study, the expression level of L-asparaginase in Bacillus was enhanced through optimization of expression element and host. Firstly, five signal peptides (SPSacC, SPAmyL, SPAprE, SPYwbN and SPWapA) were screened, among which SPSacC showed the best performance, reaching an activity of 157.61 U/mL. Subsequently, four strong promoters (P43, PykzA-P43, PUbay and PbacA) from Bacillus were screened, and tandem promoter PykzA-P43 showed the highest yield of L-asparaginase, which was 52.94% higher than that of control strain. Finally, three Bacillus expression hosts (B. licheniformis Δ0F3 and BL10, B. subtilis WB800) were investigated, and the maximum L-asparaginase activity, 438.3 U/mL, was reached by B. licheniformis BL10, which was an 81.83% increase compared with that of the control. This is also the highest level of L-asparaginase in shake flask reported to date. Taken together, this study constructed a B. licheniformis strain BL10/PykzA-P43-SPSacC-ansZ capable of efficiently producing L-asparaginase, which laid the foundation for industrial production of L-asparaginase.
Bacillus licheniformis/metabolism*
;
Asparaginase/genetics*
;
Bacillus/genetics*
;
Protein Sorting Signals
;
Promoter Regions, Genetic/genetics*
;
Bacillus subtilis/genetics*
;
Bacterial Proteins
6.Effect of hemX gene deletion on heme synthesis in Bacillus amyloliquefaciens.
Jiameng LIU ; Yexue LIU ; Chenxu ZHAO ; Wenhang WANG ; Qinggang LI ; Fuping LU ; Yu LI
Chinese Journal of Biotechnology 2023;39(3):1119-1130
Heme, which exists widely in living organisms, is a porphyrin compound with a variety of physiological functions. Bacillus amyloliquefaciens is an important industrial strain with the characteristics of easy cultivation and strong ability for expression and secretion of proteins. In order to screen the optimal starting strain for heme synthesis, the laboratory preserved strains were screened with and without addition of 5-aminolevulinic acid (ALA). There was no significant difference in the heme production of strains BA, BAΔ6 and BAΔ6ΔsigF. However, upon addition of ALA, the heme titer and specific heme production of strain BAΔ6ΔsigF were the highest, reaching 200.77 μmol/L and 615.70 μmol/(L·g DCW), respectively. Subsequently, the hemX gene (encoding the cytochrome assembly protein HemX) of strain BAΔ6ΔsigF was knocked out to explore its role in heme synthesis. It was found that the fermentation broth of the knockout strain turned red, while the growth was not significantly affected. The highest ALA concentration in flask fermentation reached 82.13 mg/L at 12 h, which was slightly higher than that of the control 75.11 mg/L. When ALA was not added, the heme titer and specific heme production were 1.99 times and 1.45 times that of the control, respectively. After adding ALA, the heme titer and specific heme production were 2.08 times and 1.72 times higher than that of the control, respectively. Real-time quantitative fluorescent PCR showed that the expressions of hemA, hemL, hemB, hemC, hemD, and hemQ genes at transcription level were up-regulated. We demonstrated that deletion of hemX gene can improve the production of heme, which may facilitate future development of heme-producing strain.
Gene Deletion
;
Bacillus amyloliquefaciens/metabolism*
;
Aminolevulinic Acid/metabolism*
;
Heme/metabolism*
;
Fermentation
7.Isolation of a foodborne Bacillus cereus strain and its effect on intestinal mucosal immunity-associated factors and gut microbial community in mice.
Li GAO ; Shan HE ; Lili WANG ; Yuting LIU ; Tong WEN
Chinese Journal of Biotechnology 2023;39(4):1759-1772
Bacillus cereus is a common foodborne pathogen. Accidently eating food contaminated by B. cereus will cause vomiting or diarrhea, and even death in severe cases. In the present study, a B. cereus strain was isolated from spoiled rice by streak culture. The pathogenicity and drug resistance of the isolated strain were analyzed by drug sensitivity test and PCR amplification of virulence-associated gene respectively. Cultures of the purified strain were injected intraperitoneally into mice to examine their effects on intestinal immunity-associated factors and gut microbial communities, to provide references for the pathogenic mechanism and medication guidance of these spoilage microorganisms. The results showed that the isolated B. cereus strain was sensitive to norfloxacin, nitrofurantoin, tetracycline, minocycline, ciprofloxacin, spectinomycin, clindamycin, erythrocin, clarithromycin, chloramphenicol, levofloxacin, and vancomycin, but resistant to bactrim, oxacillin and penicillin G. The strain carries seven virulence-associated genes including hblA, hblC, hblD, nheA, nheB, nheC and entFM, which are involved in diarrhea-causing toxins production. After infecting mice, the isolated B. cereus strain was found to cause diarrhea in mice, and the expression levels of immunoglobulins and inflammatory factors in the intestinal mucosae of the challenged mice were significantly up-regulated. Gut microbiome analysis showed that the composition of gut microbial community in mice changed after infection with B. cereus. The abundance of the uncultured_bacterium_f_Muribaculaceae in Bacteroidetes, which is a marker of body health, was significantly decreased. On the other hand, the abundance of uncultured_bacterium_f_Enterobacteriaceae, which is an opportunistic pathogen in Proteobacteria and a marker of dysbacteriosis, was significantly increased and was significantly positively correlated with the concentrations of IgM and IgG. These results showed that the pathogenic B. cereus carrying diarrhea type virulence-associated gene can activate the immune system by altering the composition of gut microbiota upon infection.
Animals
;
Mice
;
Bacillus cereus/metabolism*
;
Food Microbiology
;
Immunity, Mucosal
;
Diarrhea
;
Microbiota
;
Enterotoxins/genetics*
8.Functional analysis of functional membrane microdomains in the biosynthesis of menaquinone-7.
Yajun DONG ; Shixiu CUI ; Yanfeng LIU ; Jianghua LI ; Guocheng DU ; Xueqin LÜ ; Long LIU
Chinese Journal of Biotechnology 2023;39(6):2215-2230
Functional membrane microdomains (FMMs) that are mainly composed of scaffold proteins and polyisoprenoids play important roles in diverse cellular physiological processes in bacteria. The aim of this study was to identify the correlation between MK-7 and FMMs and then regulate the MK-7 biosynthesis through FMMs. Firstly, the relationship between FMMs and MK-7 on the cell membrane was determined by fluorescent labeling. Secondly, we demonstrated that MK-7 is a key polyisoprenoid component of FMMs by analyzing the changes in the content of MK-7 on cell membrane and the changes in the membrane order before and after destroying the integrity of FMMs. Subsequently, the subcellular localization of some key enzymes in MK-7 synthesis was explored by visual analysis, and the intracellular free pathway enzymes Fni, IspA, HepT and YuxO were localized to FMMs through FloA to achieve the compartmentalization of MK-7 synthesis pathway. Finally, a high MK-7 production strain BS3AT was successfully obtained. The production of MK-7 reached 300.3 mg/L in shake flask and 464.2 mg/L in 3 L fermenter.
Bacillus subtilis/metabolism*
;
Vitamin K 2/metabolism*
;
Bioreactors/microbiology*
;
Membrane Microdomains/metabolism*
9.Development of biosensors highly responsive to N-acetylneuraminic acid in Bacillus subtilis.
Jiaqi SUN ; Yanting CAO ; Xueqin LÜ ; Jianghua LI ; Long LIU ; Guocheng DU ; Jian CHEN ; Yanfeng LIU
Chinese Journal of Biotechnology 2023;39(5):2502-2516
Bacillus subtilis is recognized as a generally-regarded-as-safe strain, and has been widely used in the biosynthesis of high value-added products, including N-acetylneuraminic acid (NeuAc) which is widely used as a nutraceutical and a pharmaceutical intermediate. Biosensors responding to target products are widely used in dynamic regulation and high-throughput screening in metabolic engineering to improve the efficiency of biosynthesis. However, B. subtilis lacks biosensors that can efficiently respond to NeuAc. This study first tested and optimized the transport capacity of NeuAc transporters, and obtained a series of strains with different transport capacities for testing NeuAc-responsive biosensors. Subsequently, the binding site sequence of Bbr_NanR responding to NeuAc was inserted into different sites of the constitutive promoter of B. subtilis, and active hybrid promoters were obtained. Next, by introducing and optimizing the expression of Bbr_NanR in B. subtilis with NeuAc transport capacity, we obtained an NeuAc-responsive biosensor with wide dynamic range and higher activation fold. Among them, P535-N2 can sensitively respond to changes in intracellular NeuAc concentration, with the largest dynamic range (180-20 245) AU/OD. P566-N2 shows a 122-fold of activation, which is 2 times of the reported NeuAc-responsive biosensor in B. subtilis. The NeuAc-responsive biosensor developed in this study can be used to screen enzyme mutants and B. subtilis strains with high NeuAc production efficiency, providing an efficient and sensitive analysis and regulation tool for biosynthesis of NeuAc in B. subtilis.
N-Acetylneuraminic Acid/metabolism*
;
Bacillus subtilis/metabolism*
;
Promoter Regions, Genetic/genetics*
;
Binding Sites
;
Biosensing Techniques
10.Engineered Bacillus subtilis alleviates intestinal oxidative injury through Nrf2-Keap1 pathway in enterotoxigenic Escherichia coli (ETEC) K88-infected piglet.
Chaoyue WEN ; Hong ZHANG ; Qiuping GUO ; Yehui DUAN ; Sisi CHEN ; Mengmeng HAN ; Fengna LI ; Mingliang JIN ; Yizhen WANG
Journal of Zhejiang University. Science. B 2023;24(6):496-509
Engineered probiotics can serve as therapeutics based on their ability of produce recombinant immune-stimulating properties. In this study, we built the recombinant Bacillus subtilis WB800 expressing antimicrobial peptide KR32 (WB800-KR32) using genetic engineering methods and investigated its protective effects of nuclear factor-E2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway activation in intestinal oxidative disturbance induced by enterotoxigenic Escherichia coli (ETEC) K88 in weaned piglets. Twenty-eight weaned piglets were randomly distributed into four treatment groups with seven replicates fed with a basal diet. The feed of the control group (CON) was infused with normal sterilized saline; meanwhile, the ETEC, ETEC+WB800, and ETEC+WB800-KR32 groups were orally administered normal sterilized saline, 5×1010 CFU (CFU: colony forming units) WB800, and 5×1010 CFU WB800-KR32, respectively, on Days 1‒14 and all infused with ETEC K88 1×1010 CFU on Days 15‒17. The results showed that pretreatment with WB800-KR32 attenuated ETEC-induced intestinal disturbance, improved the mucosal activity of antioxidant enzyme (catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx)) and decreased the content of malondialdehyde (MDA). More importantly, WB800-KR32 downregulated genes involved in antioxidant defense (GPx and SOD1). Interestingly, WB800-KR32 upregulated the protein expression of Nrf2 and downregulated the protein expression of Keap1 in the ileum. WB800-KR32 markedly changed the richness estimators (Ace and Chao) of gut microbiota and increased the abundance of Eubacterium_rectale_ATCC_33656 in the feces. The results suggested that WB800-KR32 may alleviate ETEC-induced intestinal oxidative injury through the Nrf2-Keap1 pathway, providing a new perspective for WB800-KR32 as potential therapeutics to regulate intestinal oxidative disturbance in ETEC K88 infection.
Animals
;
Swine
;
Enterotoxigenic Escherichia coli
;
Kelch-Like ECH-Associated Protein 1
;
Bacillus subtilis
;
NF-E2-Related Factor 2
;
Antioxidants
;
Oxidative Stress

Result Analysis
Print
Save
E-mail