1.Screening and identification of antagonistic Bacillus against Astragalus membranaceus root rot and its effect on microorganism community in root zone soil.
Fen GAO ; Xiao-Xia ZHAO ; Huan YAN ; Zhen-Hong LEI ; Meng-Liang WANG ; Xue-Mei QIN
China Journal of Chinese Materia Medica 2019;44(18):3942-3947
The Astragalus membranaceus root rot disease,a soil-borne disease,has become increasingly severe in Shanxi province.This study was aimed at getting antagonistic Bacillus with excellent bio-control effects,and determining its effects on bacterial communities in root zone soil. With Fusarium solani and F. acuminatum as the target,antagonistic Bacillus was selected through such tests as living body dual culture,antifungal effect of bacteria-free filtrate,mycelia growth inhibition in vitro and control effect in detached roots,and identified with morphology,physio-biochemical characteristics and 16 S r DNA sequence analysis. The results showed that the Bacillus strain SXKF16-1 had obvious antifungal effect. The diameter of inhibition zone of its bacteria-free filtrate to F. solani and F. acuminatum was( 25. 90±1. 18) mm and( 25. 86±1. 85) mm respectively,and showed a lasting inhibition effect to mycelia growth. The disease index of the protective treatment and that of the cure treatment in detached roots test to F. solani and F. acuminatum were( 37. 50±8. 58),( 41. 67±4. 90) and( 25. 00±8. 33),( 38. 89±9. 62) respectively,both being significantly different( P<0. 05) from that of the control. The strain SXKF16-1 was identified as Bacillus atrophaeus. The B. atrophaeus SXKF16-1 showed significantly inhibition effect to pathogen causing root rot and could increase the bacterial diversity in root zone soil. It has potential to be developed as a special biocontrol agent.
Astragalus Plant/microbiology*
;
Bacillus/physiology*
;
Biological Control Agents
;
Fusarium/pathogenicity*
;
Plant Diseases/prevention & control*
;
Plant Roots/microbiology*
;
Soil Microbiology
2.Identification of endophytic bacteria BZJN1 and research on biological control of root rot of Atractylodes macrocephala.
Jing-Mao YOU ; Kun XIONG ; Sen MU ; Jie GUO ; Xiao-Liang GUO ; Yuan-Yuan DUAN ; Juan LI ; Fan CAO ; Zong-Cheng ZOU ; Hai TAN
China Journal of Chinese Materia Medica 2018;43(3):478-483
In this study, an endophytic bacteria strain BZJN1 was isolated from Atractylodes macrocephala, and identified as Bacillus subtilis by physiological and biochemical tests and molecular identification. Strain BZJN1 could inhibit the growth of mycelia of Ceratobasidium sp. significantly, and the inhibition rate was more than 70%. The mycelium growth deformity with bulge as spherical and partially exhaustible in apex or central with microscopic observation. The inhibitory rates under 3% and 6% concentrations of the cell free fermentation were 22.7% and 38.7% expectively. The field test proved that the control efficacy of treatment of 1×10⁸ cfu·mL⁻¹ is 75.27% and 72.37% after 10 and 20 days. All the treatments of strain BZJN1 was able to promote the growth of A. macrocephala, the treatment of 1×10⁸ cfu·mL⁻¹ could able to increase the yield to 14.1%.
Atractylodes
;
microbiology
;
Bacillus subtilis
;
physiology
;
Basidiomycota
;
pathogenicity
;
Biological Control Agents
;
Endophytes
;
classification
;
isolation & purification
;
Plant Diseases
;
microbiology
;
prevention & control
3.Two novel antimicrobial peptides from skin venoms of spadefoot toad Megophrys minor.
Hong-Ling YANG ; Zhi-Qiang SHEN ; Xuan LIU ; Yi KONG
Chinese Journal of Natural Medicines (English Ed.) 2016;14(4):294-298
Amphibian skin contains rich bioactive peptides. Especially, a large amount of antimicrobial peptides have been identified from amphibian skin secretions. Antimicrobial peptides display potent cytolytic activities against a range of pathogenic bacteria and fungi and play important defense roles. No antimicrobial peptides have been reported from toads belonging to the family of Pelobatidae. In this work, two novel antimicrobial peptides (Megin 1 and Megin 2) were purified and characterized from the skin venoms of spadefoot toad Megophrys minor (Pelobatidae, Anura, Amphibia). Megin 1 had an amino acid sequence of FLKGCWTKWYSLKPKCPF-NH2, which was composed of 18 amino acid residues and contained an intra-molecular disulfide bridge and an amidated C-terminus. Megin 2 had an amino acid sequence of FFVLKFLLKWAGKVGLEHLACKFKNWC, which was composed of 27 amino acid residues and contained an intra-molecular disulfide bridge. Both Megin 1 and Megin 2 showed potential antimicrobial abilities against bacteria and fungi. The MICs of Megin 1 against Escherichia coli, Bacillus dysenteriae, Staphylococcus aureus, Bacillus subtilis, and Candida albicans were 25, 3, 6.25, 3, and 50 μg·mL(-1), respectively. The corresponding MICs for Megin 2 were 6.25, 1.5, 12.5, 1.5, and 12.5 μg·mL(-1), respectively. They also exerted strong hemolytic activity against human and rabbit red cells. The results suggested that megin peptides in the toad skin of M. minor displayed toxic effects on both eukaryotes and prokaryotes. This was the first report of antimicrobial peptides from amphibians belonging to the family of Pelobatidae.
Amino Acid Sequence
;
Amphibian Venoms
;
chemistry
;
immunology
;
isolation & purification
;
Animals
;
Anura
;
immunology
;
Bacillus
;
Candida albicans
;
Erythrocytes
;
physiology
;
Escherichia coli
;
Female
;
Hemolysis
;
Humans
;
Male
;
Peptides
;
chemistry
;
immunology
;
isolation & purification
;
Rabbits
;
Sequence Alignment
;
Skin
;
chemistry
;
immunology
;
Staphylococcus aureus
4.Sporulation or competence development? A genetic regulatory network model of cell-fate determination in Bacillus subtilis.
Zhenghui LU ; Yuling ZHOU ; Xiaozhou ZHANG ; Guimin ZHANG
Chinese Journal of Biotechnology 2015;31(11):1543-1552
Bacillus subtilis is a generally recognized as safe (GRAS) strain that has been widely used in industries including fodder, food, and biological control. In addition, B. subtilis expression system also plays a significant role in the production of industrial enzymes. However, its application is limited by its low sporulation frequency and transformation efficiency. Immense studies have been done on interpreting the molecular mechanisms of sporulation and competence development, whereas only few of them were focused on improving sporulation frequency and transformation efficiency of B. subtilis by genetic modification. The main challenge is that sporulation and competence development, as the two major developmental events in the stationary phase of B. subtilis, are regulated by the complicated intracellular genetic regulatory systems. In addition, mutual regulatory mechanisms also exist in these two developmental events. With the development of genetic and metabolic engineering, constructing genetic regulatory networks is currently one of the most attractive research fields, together with the genetic information of cell growth, metabolism, and development, to guide the industrial application. In this review, the mechanisms of sporulation and competence development of B. subtilis, their interactions, and the genetic regulation of cell growth were interpreted. In addition, the roles of these regulatory networks in guiding basic and applied research of B. subtilis and its related species were discussed.
Bacillus subtilis
;
genetics
;
physiology
;
Gene Regulatory Networks
;
Metabolic Engineering
;
Spores, Bacterial
;
physiology
5.Colonization characteristics of endophytic bacteria NJ13 in Panax ginseng and its biocontrol efficiency against Alternaria leaf spot of ginseng.
Chang-Qing CHEN ; Tong LI ; Xin-Lian LI ; Yun JIANG ; Lei TIAN ; Peng XU
China Journal of Chinese Materia Medica 2014;39(10):1782-1787
To reveal the colonization characteristics in host of endophytic biocontrol bacteria NJ13 isolated from Panax ginseng, this study obtained the marked strain NJ13-R which was double antibiotic resistant to rifampicin and streptomycin through enhancing the method of inducing antibiotic. The colonization characteristics in ginseng and its biocontrol efficiency against Alternaria spot of ginseng in the field were studied. The results showed that the strain could colonize in root, stem and leaf of ginseng and the colonization amount was positive correlated with inoculation concentration. Meanwhile, the strain could infect and then transfer in different tissues of ginseng The colonization amount of strain in roots and leaves of ginseng increased first and then decreased. However, the tendency of colonization amount of strain in stems was ascend at first and then descend slowly, and was more than that in roots and leaves along with time, which had a preference to specific tissue of its host. In field experiment, the endophytic bacteria NJ13 was proved to be effective in controlling Alternaria leaf spot of ginseng. The biocontrol efficiency of fermentation broth at the concentration of 0.76 x 10(8) cfu x mL(-1) reached 75.62%, which was close to the controlling level (73.06%) of 0.67 mg x L(-1) 50% cyprodinil WG.
Alternaria
;
physiology
;
Antibiosis
;
Bacillus
;
growth & development
;
isolation & purification
;
physiology
;
Endophytes
;
growth & development
;
isolation & purification
;
physiology
;
Panax
;
growth & development
;
microbiology
;
Plant Diseases
;
microbiology
6.Fermentation of Bacillus subtilis ge25 strain and preliminary study on its antagonistic substances.
Chen-Yun HU ; Yong LI ; Min LIU ; Wan-Long DING ; Min-Jian QIN
China Journal of Chinese Materia Medica 2014;39(14):2624-2628
Panax ginseng is one of the most important traditional Chinese herbal medicine, soil borne diseases influenced the yield and quality severely. In our previous work, endophytic Bacillus subtilis ge25 strain was isolated from ginseng root, and which showed significant antagonistic activity against several most destructive ginseng phytopathogens. In the present work, crude protein and lipopeptid extracts were prepared from LB and Landy supernate by salting out, acid precipitation methods respectively. The antagonistic activity of crude extracts and stability to temperature and protease digestion were examined by ginseng phytopathogen Alternaria panax. Results showed that, the antagonistic activity of crude protein extracts from LB culture was complete and partially lost when treated by high temperature and proteinase K. However, crude lipopeptid from Landy culture showed significant stabile antagonistic activity to them. Acid-hydrolyzation and TLC-bioautography analysis showed, that the crude lipopeptide contained at least one cyclic lipopeptide. In consideration of the stability and perfect antagonistic activity of ge25, further researches will promote the biocontrol of ginseng diseases in the field.
Alternaria
;
drug effects
;
physiology
;
Bacillus subtilis
;
metabolism
;
physiology
;
Bacterial Proteins
;
isolation & purification
;
metabolism
;
pharmacology
;
Endopeptidase K
;
metabolism
;
Endophytes
;
metabolism
;
physiology
;
Fermentation
;
Lipopeptides
;
isolation & purification
;
pharmacology
;
Panax
;
microbiology
;
Plant Roots
;
microbiology
;
Temperature
7.Optimization of Douchi fibrinolytic enzyme production by statistical experimental methods.
Xu ZHANG ; Luo-jia YUN ; Liang-bin PENG ; Yi LU ; Kun-peng MA ; Fei TANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(1):153-158
Thrombus disease, one of the common cardiovascular diseases, has attracted worldwide attention for its rising mortality and morbidity. Due to the distinct shortages of current fibrinolytic drugs, new fibrinolytic agents warrant investigation. In this study, 8 fibrinolytic enzyme-producing strains were isolated from Douchi-a traditional Chinese food, and strain XY-1 which produced the largest amount of the enzyme was chosen for the following experiments. The enzyme produced by strain XY-1 was named Douchi fibrinolytic enzyme (DFE). We optimized the liquid culture medium of strain XY-1 for enzyme production using Plackett-Burman and Box-Behnken design. The predicted maximal DFE yield was 19.78 FU/mL with 11.4 g/L peptone, 0.5 g/L magnesium sulfate and 1 g/L sodium chloride. However, we acquired maximal production of 21.33 FU/mL in actual experiments, equal to 107.84% of the theoretical value, and the yield had been increased by 79.55% as compared to the yield of un-optimized culture. It was demonstrated that the combined use of Plackett-Burman design and response surface methodology in fermentation optimization can effectively and rapidly increase DFE production.
Bacillus
;
physiology
;
Bioreactors
;
microbiology
;
Blood Coagulation
;
drug effects
;
physiology
;
Cells, Cultured
;
Combinatorial Chemistry Techniques
;
Computer Simulation
;
Fabaceae
;
enzymology
;
growth & development
;
microbiology
;
Fibrinolytic Agents
;
isolation & purification
;
metabolism
;
pharmacology
;
Humans
;
Models, Biological
;
Models, Statistical
8.Toxicity studies for indigenous Bacillus thuringiensis isolates from Malang City, East Java on Aedes aegypti larvae.
Zulfaidah Penata GAMA ; Nobukazu NAKAGOSHI ; Suharjono ; Faridah SETYOWATI
Asian Pacific Journal of Tropical Biomedicine 2013;3(2):111-117
OBJECTIVETo investigate the toxicity of indigenous Bacillus thuringiensis (B. thuringiensis)isolates from Malang City for controlling Aedes aegypti (Ae. aegypti) larvae.
METHODSSoil samples were taken from Purwantoro and Sawojajar sub-districts. Bacterial isolation was performed using B. thuringiensis selective media. Phenotypic characteristics of the isolates were obtained with the simple matching method. The growth and prevalence of spores were determined by the Total Plate Count method, and toxicity tests were also performed on the third instar larval stage of Ae. aegypti. The percentage of larval mortality was analysed using probit regression. The LC50 was analysed by ANOVA, and the Tukey HSD interval was 95%.
RESULTSAmong the 33 selected bacterial isolates, six were obtained (PWR4-31, PWR4-32, SWJ4-2b, SWJ4-4b, SWJ-4k and SWJ5-1) that had a similar phenotype to reference B. thuringiensis. Based on the dendrogram, all of the bacterial isolates were 71% similar. Three isolates that had a higher prevalence of reference B. thuringiensis were PWR4-32, SWJ4-4b and SW5-1, of which the spore prevalence was 52.44%, 23.59%, 34.46%, respectively. These three indigenous isolates from Malang City successfully killed Ae. aegypti larvae. The PWR4-32 isolates were the most effective at killing the larvae.
CONCLUSIONSSix indigenous B. thuringiensis isolates among the 33 bacterial isolates found in the Sawojajar and Purwantoro sub-districts were toxic to the third instar larvae of Ae. aegypti. The PWR4-32 isolates were identical to the reference B. thuringiensis and had 88% phenotype similarity. The PWR4-32 isolates had the highest spore prevalence (52.44%), and the early stationary phase occurred at 36 h. The PWR4-32 isolates were the most effective at killing Ae. aegypti larvae (LC50-72 h=2.3×10(8) cells/mL).
Aedes ; microbiology ; Animals ; Bacillus thuringiensis ; isolation & purification ; physiology ; Biological Control Agents ; Indonesia ; Insecticides ; Larva ; microbiology ; Lethal Dose 50 ; Mosquito Control
9.Antibacterial activity of some actinomycetes from Tamil Nadu, India.
Pachaiyappan Saravana KUMAR ; John Poonga Preetam RAJ ; Veeramuthu DURAIPANDIYAN ; Savarimuthu IGNACIMUTHU
Asian Pacific Journal of Tropical Biomedicine 2012;2(12):936-943
OBJECTIVETo isolate novel actinomycetes and to evaluate their antibacterial activity.
METHODSThree soil samples were collected from Vengodu (village) in Kanchipuram district, Tamil Nadu, India. Actinomycetes were isolated using serial dilution and plating method on actinomycetes isolation agar.
RESULTSTotally 35 isolates were obtained on the basis of colony characteristics on actinomycetes isolation agar. All the isolates were screened for antibacterial activity by cross streak method. Medium and optimization of day were done for the potent strains using Nathan's agar well diffusion method. Isolation of bioactive compounds from significant active isolates was done by using different media. The most active isolate VAS 10 was identified as Actinobacterium Loyola PBT VAS 10 (accession No. JF501398) using 16s rRNA sequence method. The hexane, ethyl acetate, dichloromethane and butanol extracts of VAS 10 were tested against bacteria. The maximum antibacterial activity was observed in dichloromethane and ethyl acetate; maximum zones of inhibition were observed against Enterococcus durans. The rRNA secondary structure and the restriction sites of Actinobacterium Loyola VAS 10 were predicted using Genebee and NEBCutter online tools respectively.
CONCLUSIONSThe present study showed that among the isolated actinomycetes, Actinobacterium Loyola PBT VAS 10 (accession No. JF501398) showed good antibacterial activity against the tested bacteria.
Actinobacteria ; chemistry ; isolation & purification ; physiology ; Animals ; Anti-Bacterial Agents ; pharmacology ; Antibiosis ; physiology ; Bacillus subtilis ; drug effects ; Enterobacter aerogenes ; drug effects ; Escherichia coli ; drug effects ; India ; Microbial Sensitivity Tests ; Phylogeny ; RNA, Ribosomal, 16S ; genetics ; Soil Microbiology ; Species Specificity ; Vibrio parahaemolyticus ; drug effects
10.Antimicrobial activity of endophytic fungi isolated from Dendrobium species in southwestern China.
Jinlong CUI ; Yunqiang WANG ; Yongmei XING ; Shunxing GUO ; Peigen XIAO ; Mengliang WANG
China Journal of Chinese Materia Medica 2012;37(6):764-770
OBJECTIVETo isolate and characterize endophytic fungi from seven Dendrobium species, and detect their antimicrobial activities.
METHODFungal endophytes were isolated by strictly sterile sample preparation and fungal identification methods were based on their ITS ribosomal DNA (ITS rDNA gene) sequences. The agar well diffusion method was then employed to evaluate the antimicrobial activity against six pathogenic organisms and the phylogenetic tree of active isolates was constructed by the MEGA.
RESULTNinety-eight endophytic fungi obtained from seven Dendrobium spp., and among them twenty-four isolates, representing 11 genera and 14 species, displayed anti-microbial activities. The phylogenetic assay based on ITS-rDNA showed that 24 active isolates were sorted to 7 taxonomic orders: Hypocreales, Sordariales, Capnodiales, Eurotiales, Botryosphaeriales, Xylariales and Mucorales. The results of antimicrobial activity assay revealed that 1.02%, 10.2%, 18.4%, 1.02%, 1.02% and 10.2% of fermentation broths of 98 isolates displayed significant antimicrobial activities against E. coli, B. subtilis, S. aureus, C. albicans, C. neoformans and A. fumigatus, respectively. Four strains DL-R-3, DL-S-6, DG-R-10 and DN-S-1 displayed strong and broad antimicrobial spectrum.
CONCLUSIONEndophytic fungi associated with Dendrobium species have fungal diversity, and possess diverse antimicrobial activity.
Anti-Infective Agents ; metabolism ; pharmacology ; Aspergillus fumigatus ; drug effects ; Bacillus subtilis ; drug effects ; Base Sequence ; Biodiversity ; Candida albicans ; drug effects ; China ; Cryptococcus neoformans ; drug effects ; DNA, Fungal ; chemistry ; isolation & purification ; DNA, Ribosomal Spacer ; chemistry ; genetics ; Dendrobium ; microbiology ; physiology ; Endophytes ; classification ; genetics ; isolation & purification ; physiology ; Escherichia coli ; drug effects ; Fungi ; classification ; genetics ; isolation & purification ; physiology ; Microbial Sensitivity Tests ; Molecular Sequence Data ; Phylogeny ; Plant Roots ; microbiology ; physiology ; Plant Stems ; microbiology ; physiology ; Sequence Alignment ; Sequence Analysis, DNA ; Staphylococcus aureus ; drug effects

Result Analysis
Print
Save
E-mail