1.Using transporter to enhance the acid tolerance of Bacillus coagulans DSM1.
Jing LI ; Yu WANG ; Bo YU ; Limin WANG ; Jiansong JU
Chinese Journal of Biotechnology 2023;39(8):3394-3405
As the precursor of polylactic acid (PLA), optically pure l-lactic acid production is attracting increasing attention. The accumulation of lactic acid during fermentation inhibits strain growth. Therefore, it is necessary to improve the acid tolerance of lactic acid producers. In this study, comparative transcriptomic analysis was performed to investigate the effects of transporters on lactic acid tolerance of Bacillus coagulans DSM1, which is an l-lactic acid producer. The genes with more than two-fold up-regulation in transcriptional profile were further verified using real-time PCR. The transcriptional levels of RS06895, RS10595, RS10595, RS00500, RS00500, RS10635 and RS10635 were enhanced during lactic acid fermentation. Strain overexpressing RS10595 exhibited a retarded cell growth and low lactic acid production at pH 6.0, but an improved lactic acid production at pH 4.6. This study may facilitate the investigation of the acid tolerance mechanism in B. coagulans DSM1, as well as the construction of efficient lactic acid producers.
Bacillus coagulans/genetics*
;
Lactic Acid
;
Cell Cycle
;
Cell Proliferation
;
Fermentation
2.Targeted innovative design of Bt Cry toxin insecticidal mimics.
Chongxin XU ; Yuan LIU ; Xiao ZHANG ; Xianjin LIU
Chinese Journal of Biotechnology 2023;39(2):446-458
Bt Cry toxin is the mostly studied and widely used biological insect resistance protein, which plays a leading role in the green control of agricultural pests worldwide. However, with the wide application of its preparations and transgenic insecticidal crops, the resistance to target pests and potential ecological risks induced by the drive are increasingly prominent and attracting much attention. The researchers seek to explore new insecticidal protein materials that can simulate the insecticidal function of Bt Cry toxin. This will help to escort the sustainable and healthy production of crops, and relieve the pressure of target pests' resistance to Bt Cry toxin to a certain extent. In recent years, the author's team has proposed that Ab2β anti-idiotype antibody has the property of mimicking antigen structure and function based on the "Immune network theory" of antibody. With the help of phage display antibody library and specific antibody high-throughput screening and identification technology, Bt Cry toxin antibody was designed as the coating target antigen, and a series of Ab2β anti-idiotype antibodies (namely Bt Cry toxin insecticidal mimics) were screened from the phage antibody library. Among them, the lethality of Bt Cry toxin insecticidal mimics with the strongest activity was close to 80% of the corresponding original Bt Cry toxin, showing great promise for the targeted design of Bt Cry toxin insecticidal mimics. This paper systematically summarized the theoretical basis, technical conditions, research status, and discussed the development trend of relevant technologies and how to promote the application of existing achievements, aiming to facilitate the research and development of green insect-resistant materials.
Insecticides/metabolism*
;
Bacillus thuringiensis
;
Endotoxins/pharmacology*
;
Bacillus thuringiensis Toxins/metabolism*
;
Hemolysin Proteins/pharmacology*
;
Bacterial Proteins/chemistry*
;
Plants, Genetically Modified/genetics*
;
Pest Control, Biological
3.Efficient production of L-asparaginase in Bacillus licheniformis by optimizing expression elements and host.
Xinyuan YANG ; Yi RAO ; Mengxi ZHANG ; Jiaqi WANG ; Wenyuan LIU ; Dongbo CAI ; Shouwen CHEN
Chinese Journal of Biotechnology 2023;39(3):1096-1106
L-asparaginase (L-ASN) is widely applied in the treatment of malignant tumor and low-acrylamide food production, however, the low expression level hampers its application. Heterologous expression is an effective strategy to increase the expression level of target enzymes, and Bacillus is generally used as the host for efficient production of enzymes. In this study, the expression level of L-asparaginase in Bacillus was enhanced through optimization of expression element and host. Firstly, five signal peptides (SPSacC, SPAmyL, SPAprE, SPYwbN and SPWapA) were screened, among which SPSacC showed the best performance, reaching an activity of 157.61 U/mL. Subsequently, four strong promoters (P43, PykzA-P43, PUbay and PbacA) from Bacillus were screened, and tandem promoter PykzA-P43 showed the highest yield of L-asparaginase, which was 52.94% higher than that of control strain. Finally, three Bacillus expression hosts (B. licheniformis Δ0F3 and BL10, B. subtilis WB800) were investigated, and the maximum L-asparaginase activity, 438.3 U/mL, was reached by B. licheniformis BL10, which was an 81.83% increase compared with that of the control. This is also the highest level of L-asparaginase in shake flask reported to date. Taken together, this study constructed a B. licheniformis strain BL10/PykzA-P43-SPSacC-ansZ capable of efficiently producing L-asparaginase, which laid the foundation for industrial production of L-asparaginase.
Bacillus licheniformis/metabolism*
;
Asparaginase/genetics*
;
Bacillus/genetics*
;
Protein Sorting Signals
;
Promoter Regions, Genetic/genetics*
;
Bacillus subtilis/genetics*
;
Bacterial Proteins
4.Isolation of a foodborne Bacillus cereus strain and its effect on intestinal mucosal immunity-associated factors and gut microbial community in mice.
Li GAO ; Shan HE ; Lili WANG ; Yuting LIU ; Tong WEN
Chinese Journal of Biotechnology 2023;39(4):1759-1772
Bacillus cereus is a common foodborne pathogen. Accidently eating food contaminated by B. cereus will cause vomiting or diarrhea, and even death in severe cases. In the present study, a B. cereus strain was isolated from spoiled rice by streak culture. The pathogenicity and drug resistance of the isolated strain were analyzed by drug sensitivity test and PCR amplification of virulence-associated gene respectively. Cultures of the purified strain were injected intraperitoneally into mice to examine their effects on intestinal immunity-associated factors and gut microbial communities, to provide references for the pathogenic mechanism and medication guidance of these spoilage microorganisms. The results showed that the isolated B. cereus strain was sensitive to norfloxacin, nitrofurantoin, tetracycline, minocycline, ciprofloxacin, spectinomycin, clindamycin, erythrocin, clarithromycin, chloramphenicol, levofloxacin, and vancomycin, but resistant to bactrim, oxacillin and penicillin G. The strain carries seven virulence-associated genes including hblA, hblC, hblD, nheA, nheB, nheC and entFM, which are involved in diarrhea-causing toxins production. After infecting mice, the isolated B. cereus strain was found to cause diarrhea in mice, and the expression levels of immunoglobulins and inflammatory factors in the intestinal mucosae of the challenged mice were significantly up-regulated. Gut microbiome analysis showed that the composition of gut microbial community in mice changed after infection with B. cereus. The abundance of the uncultured_bacterium_f_Muribaculaceae in Bacteroidetes, which is a marker of body health, was significantly decreased. On the other hand, the abundance of uncultured_bacterium_f_Enterobacteriaceae, which is an opportunistic pathogen in Proteobacteria and a marker of dysbacteriosis, was significantly increased and was significantly positively correlated with the concentrations of IgM and IgG. These results showed that the pathogenic B. cereus carrying diarrhea type virulence-associated gene can activate the immune system by altering the composition of gut microbiota upon infection.
Animals
;
Mice
;
Bacillus cereus/metabolism*
;
Food Microbiology
;
Immunity, Mucosal
;
Diarrhea
;
Microbiota
;
Enterotoxins/genetics*
5.Development of biosensors highly responsive to N-acetylneuraminic acid in Bacillus subtilis.
Jiaqi SUN ; Yanting CAO ; Xueqin LÜ ; Jianghua LI ; Long LIU ; Guocheng DU ; Jian CHEN ; Yanfeng LIU
Chinese Journal of Biotechnology 2023;39(5):2502-2516
Bacillus subtilis is recognized as a generally-regarded-as-safe strain, and has been widely used in the biosynthesis of high value-added products, including N-acetylneuraminic acid (NeuAc) which is widely used as a nutraceutical and a pharmaceutical intermediate. Biosensors responding to target products are widely used in dynamic regulation and high-throughput screening in metabolic engineering to improve the efficiency of biosynthesis. However, B. subtilis lacks biosensors that can efficiently respond to NeuAc. This study first tested and optimized the transport capacity of NeuAc transporters, and obtained a series of strains with different transport capacities for testing NeuAc-responsive biosensors. Subsequently, the binding site sequence of Bbr_NanR responding to NeuAc was inserted into different sites of the constitutive promoter of B. subtilis, and active hybrid promoters were obtained. Next, by introducing and optimizing the expression of Bbr_NanR in B. subtilis with NeuAc transport capacity, we obtained an NeuAc-responsive biosensor with wide dynamic range and higher activation fold. Among them, P535-N2 can sensitively respond to changes in intracellular NeuAc concentration, with the largest dynamic range (180-20 245) AU/OD. P566-N2 shows a 122-fold of activation, which is 2 times of the reported NeuAc-responsive biosensor in B. subtilis. The NeuAc-responsive biosensor developed in this study can be used to screen enzyme mutants and B. subtilis strains with high NeuAc production efficiency, providing an efficient and sensitive analysis and regulation tool for biosynthesis of NeuAc in B. subtilis.
N-Acetylneuraminic Acid/metabolism*
;
Bacillus subtilis/metabolism*
;
Promoter Regions, Genetic/genetics*
;
Binding Sites
;
Biosensing Techniques
6.Analysis of epidemic characteristics of anthrax in China from 2017 to 2019 and molecular typing of Bacillus anthracis.
En Min ZHANG ; Hui Juan ZHANG ; Jin Rong HE ; Wei LI ; Jian Chun WEI
Chinese Journal of Preventive Medicine 2022;56(4):422-426
Objective: To analyze the epidemiological characteristics of anthrax in China from 2017 to 2019 and molecular typing of Bacillus anthracis isolated from some provinces (autonomous regions). Methods: Surveillance data of anthrax cases reported from 2017 to 2019 in the Infectious Disease Surveillance information System of China Disease Prevention and Control and the Public Health Emergency Reporting and Management Information System were collected, and descriptive epidemiological methods were used to analyze the epidemic characteristics, including the temporal, geographic and demographic distribution of this disease. A total of 47 strains of Bacillus anthracis isolated from 2017 to 2019 were analyzed by canSNP and MLVA15. Results: A total of 951 cases of anthrax were reported from 2017 to 2019, of which 938 were cutaneous anthrax, representing 98.63% of the total number reported. It was mainly distributed in the west and northeast of China, and the three provinces with the highest number of cases were Gansu (215), Sichuan (202) and Qinghai (191). Cases had been reported throughout the year, more cases occurred in the summer and autumn, and August was the month with the most cases,66.35% (211/318), 72.32% (243/336) and 68.01% (202/297) of cases were reported during June to September. The age distribution was mainly between 20 and 59 years old, accounting for more than 80% of all cases. The number of male cases was significantly higher than that of female cases, the ratio of male to female was about 3∶1. The occupations were mainly herdsmen and farmers, accounting for 49.70% to 58.18% and 31.45% to 36.70%, respectively. Public health events occurred every year, and 29 events had been reported from 2017 to 2019. canSNP analysis showed that 37 of the 47 strains belonged to the A.Br.001/002 subgroup and 10 belonged to the A.Br.Ames subgroup. MLVA15 analysis showed that there were 17 genotypes, of which 10 genotypes contained only one strain. Conclusion: Cutaneous anthrax was the predominant clinical type in China from 2017 to 2019.The seasonal, geographic and demographic distribution characteristics were evident.Molecular typing methods such as canSNP and MLVA15 can be used to trace the source of infectious diseases and provide technical support for anthrax prevention and control.
Adult
;
Anthrax/prevention & control*
;
Bacillus anthracis/genetics*
;
China/epidemiology*
;
Female
;
Humans
;
Male
;
Middle Aged
;
Molecular Typing
;
Polymorphism, Single Nucleotide
;
Skin Diseases, Bacterial
;
Young Adult
7.Effects of deleting peptidoglycan hydrolase genes on the viable cell counts of Bacillus amyloliquefaciens and the yield of alkaline protease.
Xiaojian XU ; Baoyue ZHU ; Xinyue LI ; Jinfang ZHANG ; Wenlong LIU ; Fuping LU ; Yu LI
Chinese Journal of Biotechnology 2022;38(4):1506-1517
In order to explore the effect of peptidoglycan hydrolase on the viable cell counts of Bacillus amyloliquefaciens and the yield of alkaline protease, five peptidoglycan hydrolase genes (lytC, lytD, lytE, lytF and lytG) of B. amyloliquefaciens TCCC111018 were knocked out individually. The viable cell counts of the bacteria and their alkaline protease activities before and after gene deletion were determined. The viable cell counts of the knockout mutants BA ΔlytC and BA ΔlytE achieved 1.67×106 CFU/mL and 1.44×106 CFU/mL respectively after cultivation for 60 h, which were 32.5% and 14.3% higher than that of the control strain BA Δupp. Their alkaline protease activities reached 20 264 U/mL and 17 265 U/mL, respectively, which were 43.1% and 27.3% higher than that of the control strain. The results showed that deleting some of the peptidoglycan hydrolase genes effectively maintained the viable cell counts of bacteria and increased the activity of extracellular enzymes, which may provide a new idea for optimization of the microbial host for production of industrial enzymes.
Bacillus amyloliquefaciens/genetics*
;
Bacterial Proteins
;
Cell Count
;
Endopeptidases/genetics*
;
N-Acetylmuramoyl-L-alanine Amidase/genetics*
8.Advances in receptor-mediated resistance mechanisms of Lepidopteran insects to Bacillus thuringiensis toxin.
Leilei LIU ; Peiwen XU ; Kaiyu LIU ; Wei WEI ; Zhongshen CHANG ; Dahui CHENG
Chinese Journal of Biotechnology 2022;38(5):1809-1823
Bacillus thuringiensis is widely used as an insecticide which is safe and environmentally friendly to humans and animals. One of the important insecticidal mechanisms is the binding of Bt toxins to specific toxin receptors in insect midgut and forming a toxin perforation which eventually leads to insect death. The resistance of target pests to Bt toxins is an important factor hampering the long-term effective cultivation of Bt crops and the continuous use of Bt toxins. This review summarizes the mechanism of insect resistance to Bt toxins from the perspective of important Bt toxin receptors in midgut cells of Lepidopteran insects, which may facilitate the in-depth study of Bt resistance mechanism and pest control.
Animals
;
Bacillus thuringiensis/genetics*
;
Bacillus thuringiensis Toxins
;
Bacterial Proteins/metabolism*
;
Endotoxins/metabolism*
;
Hemolysin Proteins/metabolism*
;
Insecta/metabolism*
;
Insecticide Resistance/genetics*
;
Insecticides/pharmacology*
;
Pest Control, Biological
9.Identification, biological characteristics, and control of pathogen causing southern blight of Pinellia ternata.
Jia ZHOU ; Qiao-Huan CHEN ; Jia-Wei XU ; Hong CHEN ; Bi-Sheng HUANG ; Yu-Huan MIAO ; Da-Hui LIU
China Journal of Chinese Materia Medica 2022;47(19):5209-5216
In summer in 2020, Pinellia ternata in many planting areas in Hubei suffered from serious southern blight, as manifested by the yellowing and wilted leaves and rotten tubers. This study aims to identify the pathogen, clarify the biological characteristics of the pathogen, and screen fungicides. To be specific, the pathogen was isolated, purified, and identified, and the pathogenicity was detected according to the Koch's postulates. Moreover, the biological characteristics of the pathogen were analyzed. Furthermore, PDA plates and seedlings were used to determine the most effective fungicides. The results showed that the mycelia of the pathogen were white and villous with silk luster, which produced a large number of white to black brown sclerotia. The pathogen was identified as Athelia rolfsii by morphological observation and molecular identification based on LSU and TEF gene sequences. The optimum growth conditions for A. rolfsii were 30 ℃ and pH 5-8, and the optimum conditions for the germination of sclerotia were 25 ℃ and pH 7-9. Bacillus subtilis, difenoconazole, and flusilazole were identified as effective fungicides with PDA, and their half maximal effective concentration(EC_(50)) was all less than 5 mg·L~(-1). The effective fungicides screened with the seedlings were hymexazol and difenoconazole. Based on the screening experiments, difenoconazole can be used as the main agent for the prevention and treatment of southern blight.
Pinellia/genetics*
;
Fungicides, Industrial/pharmacology*
;
Seedlings
;
Bacillus subtilis
;
Mycelium
10.Expression and characterization of β-N-acetylglucosaminidases from Bacillus coagulans DSM1 for N-acetyl-β-D glucosamine production.
Congna LI ; Shun JIANG ; Chao DU ; Yuling ZHOU ; Sijing JIANG ; Guimin ZHANG
Chinese Journal of Biotechnology 2021;37(1):218-227
β-N-acetylglucosaminidases (NAGases) can convert natural substrates such as chitin or chitosan to N-acetyl-β-D glucosamine (GlcNAc) monomer that is wildly used in medicine and agriculture. In this study, the BcNagZ gene from Bacillus coagulans DMS1 was cloned and expressed in Escherichia coli. The recombinant protein was secreted into the fermentation supernatant and the expression amount reached 0.76 mg/mL. The molecular mass of purified enzyme was 61.3 kDa, and the specific activity was 5.918 U/mg. The optimal temperature and pH of the BcNagZ were 75 °C and 5.5, respectively, and remained more than 85% residual activity after 30 min at 65 °C. The Mie constant Km was 0.23 mmol/L and the Vmax was 0.043 1 mmol/(L·min). The recombinant BcNagZ could hydrolyze colloidal chitin to obtain trace amounts of GlcNAc, and hydrolyze disaccharides to monosaccharide. Combining with the reported exochitinase AMcase, BcNagZ could produce GlcNAc from hydrolysis of colloidal chitin with a yield over 86.93%.
Acetylglucosamine
;
Acetylglucosaminidase
;
Bacillus coagulans
;
Chitin
;
Chitinases
;
Hydrogen-Ion Concentration
;
Recombinant Proteins/genetics*

Result Analysis
Print
Save
E-mail