1.Research progress on immunological properties of ESAT-6 secreted by Mycobacterium tuberculosis and its role in new vaccines.
Yujie LI ; Haiyan YU ; Yuting YANG ; Guoping YANG
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):89-94
Early secreted antigenic target of 6 kDa protein (ESAT-6) is the major virulence factor of Mycobacterium tuberculosis (MTB), which can resist the clearance of MTB in bodies by inhibiting macrophage phagocytosis and autophagy reaction, thus impeding the immune defense function of the body against MTB infection. In addition, ESAT-6-induced apoptosis of macrophage and massive necrosis of innate immune cells can foster MTB proliferation and colonization, leading to systemic MTB infection. Moreover, ESAT-6 hampers the protective immune response of Th1 cells, reducing the secretion of pro-inflammatory cytokines and contributing to immune dysfunction, thus accelerating the course of MTB infection. During the process, the high immunogenicity of ESAT-6 can be leveraged as a dominant antigen in the development of new TB vaccines, making it a promising candidate with broad prospects for further development.
Humans
;
Mycobacterium tuberculosis
;
Vaccines
;
Cytokines
;
Apoptosis
;
Autophagy
;
Sepsis
2.Electroacupuncture Promotes Functional Recovery after Facial Nerve Injury in Rats by Regulating Autophagy via GDNF and PI3K/mTOR Signaling Pathway.
Jun-Peng YAO ; Xiu-Mei FENG ; Lu WANG ; Yan-Qiu LI ; Zi-Yue ZHU ; Xiang-Yun YAN ; Yu-Qing YANG ; Ying LI ; Wei ZHANG
Chinese journal of integrative medicine 2024;30(3):251-259
OBJECTIVE:
To explore the mechanism of electroacupuncture (EA) in promoting recovery of the facial function with the involvement of autophagy, glial cell line-derived neurotrophic factor (GDNF), and phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway.
METHODS:
Seventy-two male Sprague-Dawley rats were randomly allocated into the control, sham-operated, facial nerve injury (FNI), EA, EA+3-methyladenine (3-MA), and EA+GDNF antagonist groups using a random number table, with 12 rats in each group. An FNI rat model was established with facial nerve crushing method. EA intervention was conducted at Dicang (ST 4), Jiache (ST 6), Yifeng (SJ 17), and Hegu (LI 4) acupoints for 2 weeks. The Simone's 10-Point Scale was utilized to monitor the recovery of facial function. The histopathological evaluation of facial nerves was performed using hematoxylin-eosin (HE) staining. The levels of Beclin-1, light chain 3 (LC3), and P62 were detected by immunohistochemistry (IHC), immunofluorescence, and reverse transcription-polymerase chain reaction, respectively. Additionally, IHC was also used to detect the levels of GDNF, Rai, PI3K, and mTOR.
RESULTS:
The facial functional scores were significantly increased in the EA group than the FNI group (P<0.05 or P<0.01). HE staining showed nerve axons and myelin sheaths, which were destroyed immediately after the injury, were recovered with EA treatment. The expressions of Beclin-1 and LC3 were significantly elevated and the expression of P62 was markedly reduced in FNI rats (P<0.01); however, EA treatment reversed these abnormal changes (P<0.01). Meanwhile, EA stimulation significantly increased the levels of GDNF, Rai, PI3K, and mTOR (P<0.01). After exogenous administration with autophagy inhibitor 3-MA or GDNF antagonist, the repair effect of EA on facial function was attenuated (P<0.05 or P<0.01).
CONCLUSIONS
EA could promote the recovery of facial function and repair the facial nerve damages in a rat model of FNI. EA may exert this neuroreparative effect through mediating the release of GDNF, activating the PI3K/mTOR signaling pathway, and further regulating the autophagy of facial nerves.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
Electroacupuncture
;
Phosphatidylinositol 3-Kinase/metabolism*
;
Facial Nerve Injuries/therapy*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Beclin-1
;
Glial Cell Line-Derived Neurotrophic Factor
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
;
Autophagy
;
Mammals/metabolism*
3.Impairment of Autophagic Flux After Hypobaric Hypoxia Potentiates Oxidative Stress and Cognitive Function Disturbances in Mice.
Shuhui DAI ; Yuan FENG ; Chuanhao LU ; Hongchen ZHANG ; Wenke MA ; Wenyu XIE ; Xiuquan WU ; Peng LUO ; Lei ZHANG ; Fei FEI ; Zhou FEI ; Xia LI
Neuroscience Bulletin 2024;40(1):35-49
Acute hypobaric hypoxic brain damage is a potentially fatal high-altitude sickness. Autophagy plays a critical role in ischemic brain injury, but its role in hypobaric hypoxia (HH) remains unknown. Here we used an HH chamber to demonstrate that acute HH exposure impairs autophagic activity in both the early and late stages of the mouse brain, and is partially responsible for HH-induced oxidative stress, neuronal loss, and brain damage. The autophagic agonist rapamycin only promotes the initiation of autophagy. By proteome analysis, a screen showed that protein dynamin2 (DNM2) potentially regulates autophagic flux. Overexpression of DNM2 significantly increased the formation of autolysosomes, thus maintaining autophagic flux in combination with rapamycin. Furthermore, the enhancement of autophagic activity attenuated oxidative stress and neurological deficits after HH exposure. These results contribute to evidence supporting the conclusion that DNM2-mediated autophagic flux represents a new therapeutic target in HH-induced brain damage.
Mice
;
Animals
;
Hypoxia
;
Oxidative Stress
;
Autophagy
;
Cognition
;
Sirolimus/therapeutic use*
4.Effect of electroacupuncture on enteric neuronal autophagy in functional constipation mice.
Meng-Han XI ; Lu WANG ; Wei ZHANG ; Qian-Hua ZHENG ; Hai-Yan QIN ; Xiang-Yun YAN ; Si-Jue CHEN ; Ying LI
Chinese Acupuncture & Moxibustion 2023;43(11):1279-1286
OBJECTIVES:
To explore the effect mechanism of electroacupuncture (EA) on functional constipation (FC) at the combined lower he-sea and front-mu points of large intestine based on enteric neuronal autophagy.
METHODS:
A total of 40 SPF Kunming mice were randomly divided into 5 groups (n = 8), i.e. a control group, a model group, an acupuncture group, a 3-methyl adenine (3-MA) group, and a 3-MA + acupuncture group. Except the control group, the FC model was established by gavage with compound diphenoxylate suspension for 14 days in the other 4 groups. After successful modeling, the mice of the acupuncture group and the 3-MA + acupuncture group received EA at bilateral "Tianshu" (ST 25) and "Shangjuxu" (ST 37), stimulated for 30 min with disperse-dense wave, 2 Hz/15 Hz of frequency, 1 mA of intensity. EA was delivered once daily. One course of treatment was composed of 5 days and 2 courses were needed, with an interval of 2 days. An intraperitoneal injection of 3-MA (15 mg/kg) was administered 30 min before EA in the mice of the 3-MA group and the 3-MA + acupuncture group, once daily. Before and after intervention, the time of the first black stool defecation and defecation behaviors in 6 h were observed in each group. After intervention, in every group, the small intestine propulsion rate was calculated, the colon tissue morphology was observed using HE staining, the ultrastructure of enteric neuronal autophagy was observed under transmission electron microscope, and the expressions of microtubule-associated protein 1 light chain 3 (LC3), Beclin-1 and neuronal nuclear antigen protein (NeuN) in neurons of colonic muscularis were determined by immunohistochemistry.
RESULTS:
Before intervention, when compared with those in the control group, the time of the first black stool defecation was prolonged (P<0.01, P<0.05), and numbers (P<0.01), wet weight (P<0.01, P<0.05) and water content (P<0.05, P<0.01) of stool in 6 h were reduced in the model, acupuncture, 3-MA and 3-MA + acupuncture groups. After intervention, compared with those in the control group, the time of the first black stool defecation was longer (P<0.05), and numbers (P<0.01), wet weight (P<0.01) and water content (P<0.01) of stool in 6 h were decreased in the model group. The time of the first black stool defecation was shortened (P<0.01), and numbers (P<0.01), wet weight (P<0.01) and water content (P<0.01) of stool in 6 h were increased in the acupuncture group when compared with those in the model group. The time of the first black stool defecation was extended (P<0.01), and numbers (P<0.01), wet weight (P<0.01) and water content (P<0.01) of stool in 6 h were declined in the 3-MA + acupuncture group in comparison with those in the acupuncture group. All layers of colon tissue were normal and intact in each group. When compared with the control group, the small intestine propulsion rate and the average optical density (OD) values of LC3, Beclin-1 and NeuN in neurons of colonic muscularis were decreased (P<0.01), and autophagosomes were dropped in the model group. In the acupuncture group, the small intestine propulsion rate and the average OD values of NeuN, LC3 and Beclin-1 in neurons of colonic muscularis increased (P<0.01,P<0.05), and autophagosomes were elevated when compared with those in the model group. The small intestine propulsion rate and the average OD values of NeuN, LC3 and Beclin-1 in neurons of colonic muscularis were dropped (P<0.05,P<0.01) in the 3-MA + acupuncture group in comparison with those in the acupuncture group.
CONCLUSIONS
Electroacupuncture may promote enteric neuronal autophagy and increase the number of neurons so that the intestinal motility can be improved and constipation symptoms can be relieved in FC mice.
Mice
;
Animals
;
Electroacupuncture
;
Beclin-1
;
Acupuncture Points
;
Constipation/therapy*
;
Intestine, Small
;
Autophagy
;
Water
5.Impaired autophagy activity-induced abnormal differentiation of bone marrow stem cells is related to adolescent idiopathic scoliosis osteopenia.
Hongqi ZHANG ; Guanteng YANG ; Jiong LI ; Lige XIAO ; Chaofeng GUO ; Yuxiang WANG
Chinese Medical Journal 2023;136(17):2077-2085
BACKGROUND:
Osteopenia has been well documented in adolescent idiopathic scoliosis (AIS). Bone marrow stem cells (BMSCs) are a crucial regulator of bone homeostasis. Our previous study revealed a decreased osteogenic ability of BMSCs in AIS-related osteopenia, but the underlying mechanism of this phenomenon remains unclear.
METHODS:
A total of 22 AIS patients and 18 age-matched controls were recruited for this study. Anthropometry and bone mass were measured in all participants. Bone marrow blood was collected for BMSC isolation and culture. Osteogenic and adipogenic induction were performed to observe the differences in the differentiation of BMSCs between the AIS-related osteopenia group and the control group. Furthermore, a total RNA was extracted from isolated BMSCs to perform RNA sequencing and subsequent analysis.
RESULTS:
A lower osteogenic capacity and increased adipogenic capacity of BMSCs in AIS-related osteopenia were revealed. Differences in mRNA expression levels between the AIS-related osteopenia group and the control group were identified, including differences in the expression of LRRC17 , DCLK1 , PCDH7 , TSPAN5 , NHSL2 , and CPT1B . Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed several biological processes involved in the regulation of autophagy and mitophagy. The Western blotting results of autophagy markers in BMSCs suggested impaired autophagic activity in BMSCs in the AIS-related osteopenia group.
CONCLUSION
Our study revealed that BMSCs from AIS-related osteopenia patients have lower autophagic activity, which may be related to the lower osteogenic capacity and higher adipogenic capacity of BMSCs and consequently lead to the lower bone mass in AIS patients.
Humans
;
Adolescent
;
Scoliosis/genetics*
;
Cell Differentiation/physiology*
;
Osteogenesis/genetics*
;
Bone Diseases, Metabolic/genetics*
;
Kyphosis
;
Autophagy/genetics*
;
Bone Marrow Cells
;
Cells, Cultured
;
Doublecortin-Like Kinases
6.MiR-3653 blocks autophagy to inhibit epithelial-mesenchymal transition in breast cancer cells by targeting the autophagy-regulatory genes ATG12 and AMBRA1.
Huachen SONG ; Zitong ZHAO ; Liying MA ; Bailin ZHANG ; Yongmei SONG
Chinese Medical Journal 2023;136(17):2086-2100
BACKGROUND:
Metastasis is the main cause of tumor-associated death and mainly responsible for treatment failure of breast cancer. Autophagy accelerates tumor metastasis. In our work, we aimed to investigate the possibility of microRNAs (miRNAs) which participate in the regulation of autophagy to inhibit tumor metastasis.
METHODS:
MiRNA array and comprehensive analysis were performed to identify miRNAs which participated in the regulation of autophagy to inhibit tumor metastasis. The expression levels of miR-3653 in breast cancer tissues and cells were detected by quantitative real-time polymerase chain reaction. In vivo and in vitro assays were conducted to determine the function of miR-3653. The target genes of miR-3653 were detected by a dual luciferase reporter activity assay and Western blot. The relationship between miR-3653 and epithelial-mesenchymal transition (EMT) was assessed by Western blot. Student's t -test was used to analyze the difference between any two groups, and the difference among multiple groups was analyzed with one-way analysis of variance and a Bonferroni post hoc test.
RESULTS:
miR-3653 was downregulated in breast cancer cells with high metastatic ability, and high expression of miR-3653 blocked autophagic flux in breast cancer cells. Clinically, low expression of miR-3653 in breast cancer tissues (0.054 ± 0.013 vs . 0.131 ± 0.028, t = 2.475, P = 0.014) was positively correlated with lymph node metastasis (0.015 ± 0.004 vs . 0.078 ± 0.020, t = 2.319, P = 0.023) and poor prognosis ( P < 0.001). miR-3653 ameliorated the malignant phenotypes of breast cancer cells, including proliferation, migration (MDA-MB-231: 0.353 ± 0.013 vs . 1.000 ± 0.038, t = 16.290, P < 0.001; MDA-MB-468: 0.200 ± 0.014 vs . 1.000 ± 0.043, t = 17.530, P < 0.001), invasion (MDA-MB-231: 0.723 ± 0.056 vs . 1.000 ± 0.035, t = 4.223, P = 0.013; MDA-MB-468: 0.222 ± 0.016 vs . 1.000 ± 0.019, t = 31.050, P < 0.001), and colony formation (MDA-MB-231: 0.472 ± 0.022 vs . 1.000 ± 0.022, t = 16.620, P < 0.001; MDA-MB-468: 0.650 ± 0.040 vs . 1.000 ± 0.098, t = 3.297, P = 0.030). The autophagy-associated genes autophagy-related gene 12 ( ATG12 ) and activating molecule in beclin 1-regulated autophagy protein 1 ( AMBRA1 ) are target genes of miR-3653. Further studies showed that miR-3653 inhibited EMT by targeting ATG12 and AMBRA1 .
CONCLUSIONS
Our findings suggested that miR-3653 inhibits the autophagy process by targeting ATG12 and AMBRA1 , thereby inhibiting EMT, and provided a new idea and target for the metastasis of breast cancer.
Cell Line, Tumor
;
Epithelial-Mesenchymal Transition/genetics*
;
MicroRNAs/metabolism*
;
Autophagy/genetics*
;
Genes, Regulator
;
Gene Expression Regulation, Neoplastic/genetics*
;
Cell Proliferation/genetics*
;
Cell Movement/genetics*
;
Neoplasms/genetics*
7.Ferroptosis:Mechanism and Role in Malignant Tumors.
Xin-Feng WANG ; Yu-Xin YAO ; Pan WANG
Acta Academiae Medicinae Sinicae 2023;45(4):647-654
Ferroptosis is a new type of programmed cell death different from other cell death pathways such as apoptosis,autophagy,necrosis,and pyroptosis in terms of initiation,mechanisms,and molecular characteristics.As the accumulation of phospholipid hydroperoxides is the hallmark of ferroptosis,the balance between oxidative damage and antioxidant defense is critical to the regulatory mechanism of ferroptosis.In cancer,the upregulation of antioxidant defense pathways can inhibit ferroptosis,thereby promoting cancer cells to survive the oxidative stress and develop drug resistance.This review systematically introduces the main features and regulatory mechanisms of ferroptosis.In addition,we summarize the role of ferroptosis in the progression and drug resistance of malignant tumors,providing novel implications for further research on the pathogenesis of malignant tumors and discovery of new targets for anti-cancer therapy.
Humans
;
Ferroptosis
;
Antioxidants
;
Apoptosis
;
Neoplasms
;
Autophagy
8.Cangxi Tongbi Capsules promote chondrocyte autophagy by regulating circRNA_0008365/miR-1271/p38 MAPK pathway to inhibit development of knee osteoarthritis.
Wen-Peng XIE ; Teng MA ; Yan-Chen LIANG ; Xiang-Peng WANG ; Rong-Xiu BI ; Wei-Guo WANG ; Yong-Kui ZHANG
China Journal of Chinese Materia Medica 2023;48(18):4843-4851
To investigate the mechanism by which Cangxi Tongbi Capsules promote chondrocyte autophagy to inhibit knee osteoarthritis(KOA) progression by regulating the circRNA_0008365/miR-1271/p38 mitogen-activated protein kinase(MAPK) pathway. The cell and animal models of KOA were established and intervened with Cangxi Tongbi Capsules, si-circRNA_0008365, si-NC, and Cangxi Tongbi Capsules combined with si-circRNA_0008365. Flow cytometry and transmission electron microscopy were employed to determine the level of apoptosis and observe autophagosomes, respectively. Western blot was employed to reveal the changes in the protein levels of microtubule-associated protein light chain 3(LC3)Ⅱ/Ⅰ, Beclin-1, selective autophagy junction protein p62/sequestosome 1, collagen Ⅱ, a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTS-5), and p38 MAPK. The mRNA levels of circRNA_0008365, miR-1271, collagen Ⅱ, and ADAMTS-5 were determined by qRT-PCR. Hematoxylin-eosin staining was employed to reveal the pathological changes of the cartilage tissue of the knee, and enzyme-linked immunosorbent assay to measure the levels of interleukin-1β(IL-1β) and tumor necrosis factor-alpha(TNF-α). The chondrocytes treated with IL-1β showed down-regulated expression of circRNA_0008365, up-regulated expression of miR-1271 and p38 MAPK, lowered autophagy level, increased apoptosis rate, and accelerated catabolism of extracellular matrix. The intervention with Cangxi Tongbi Capsules up-regulated the expression of circRNA_0008365, down-regulated the expression of miR-1271 and p38 MAPK, increased the autophagy level, decreased the apoptosis rate, and weakened the catabolism of extracellular matrix. However, the effect of Cangxi Tongbi Capsules was suppressed after interfering with circRNA_0008365. The in vivo experiments showed that Cangxi Tongbi Capsules dose-dependently inhibited the p38 MAPK pathway, enhanced chondrocyte autophagy, and mitigated articular cartilage damage and inflammatory response, thereby inhibiting the progression of KOA in rats. This study indicated that Cangxi Tongbi Capsules promoted chondrocyte autophagy by regulating the circRNA_0008365/miR-1271/p38 MAPK pathway to inhibit the development of KOA.
Rats
;
Animals
;
Chondrocytes
;
Osteoarthritis, Knee/pathology*
;
RNA, Circular/pharmacology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
MicroRNAs/metabolism*
;
Apoptosis
;
Autophagy/genetics*
;
Collagen/metabolism*
9.Morin induces autophagy and apoptosis in hepatocellular carcinoma cells through Akt/mTOR/STAT3 pathway.
Xin-Yue ZHAO ; Ying-Ying TIAN ; Chuang LIU ; Yi-Lin LI ; Ying-Nan LYU ; Shang-Yue YU ; Shi-Qiu TIAN ; Hai-Luan PEI ; Ze-Ping ZUO ; Zhi-Bin WANG
China Journal of Chinese Materia Medica 2023;48(16):4475-4482
This study investigated the effect and mechanism of morin in inducing autophagy and apoptosis in hepatocellular carcinoma cells through the protein kinase B(Akt)/mammalian target of rapamycin(mTOR)/signal transducer and activator of transcription protein 3(STAT3) pathway. Human hepatocellular carcinoma SK-HEP-1 cells were stimulated with different concentrations of morin(0, 50, 100, 125, 200, and 250 μmol·L~(-1)). The effect of morin on the viability of SK-HEP-1 cells was detected by Cell Counting Kit-8(CCK-8). The effect of morin on the proliferation and apoptosis of SK-HEP-1 cells was investigated using colony formation assay, flow cytometry, and BeyoClick~(TM) EdU-488 with different concentrations of morin(0, 125, and 250 μmol·L~(-1)). The changes in the autophagy level of cells treated with morin were examined by transmission electron microscopy and autophagy inhibitors. The impact of morin on the expression levels of proteins related to the Akt/mTOR/STAT3 pathway was verified by Western blot. Compared with the control group, the morin groups showed decreased viability of SK-HEP-1 cells in a time-and concentration-dependent manner, increased number of apoptotic cells, up-regulated expression level of apoptosis marker PARP, up-regulated phosphorylation level of apoptosis-regulating protein H2AX, decreased number of positive cells and the colony formation rate, an upward trend of expression levels of autophagy-related proteins LC3-Ⅱ, Atg5, and Atg7, and decreased phosphorylation levels of Akt, mTOR, and STAT3. These results suggest that morin can promote apoptosis, inhibit proliferation, and induce autophagy in hepatocellular carcinoma cells, and its mechanism of action may be related to the Akt/mTOR/STAT3 pathway.
Humans
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Carcinoma, Hepatocellular/pathology*
;
Liver Neoplasms/pathology*
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis
;
Autophagy
;
Cell Proliferation
;
Cell Line, Tumor
;
STAT3 Transcription Factor/metabolism*
10.Mechanism of astragaloside Ⅳ in regulating autophagy of PC12 cells under oxygen-glucose deprivation by medicating Akt/mTOR/HIF-1α pathway.
Jia-Xin LONG ; Meng-Zhi TIAN ; Xiao-Yi CHEN ; Yu XIONG ; Huang-He YU ; Yong-Zhen GONG ; Huang DING ; Ming-Xia XIE ; Ke DU
China Journal of Chinese Materia Medica 2023;48(19):5271-5277
This study explored the protective effect of astragaloside Ⅳ(AS-Ⅳ) on oxygen-glucose deprivation(OGD)-induced autophagic injury in PC12 cells and its underlying mechanism. An OGD-induced autophagic injury model in vitro was established in PC12 cells. The cells were divided into a normal group, an OGD group, low-, medium-, and high-dose AS-Ⅳ groups, and a positive drug dexmedetomidine(DEX) group. Cell viability was measured using the MTT assay. Transmission electron microscopy was used to observe autophagosomes and autolysosomes, and the MDC staining method was used to assess the fluorescence intensity of autophagosomes. Western blot was conducted to determine the relative expression levels of functional proteins LC3-Ⅱ/LC3-Ⅰ, Beclin1, p-Akt/Akt, p-mTOR/mTOR, and HIF-1α. Compared with the normal group, the OGD group exhibited a significant decrease in cell viability(P<0.01), an increase in autophagosomes(P<0.01), enhanced fluorescence intensity of autophagosomes(P<0.01), up-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and down-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.05 or P<0.01). Compared with the OGD group, the low-and medium-dose AS-Ⅳ groups and the DEX group showed a significant increase in cell viability(P<0.01), decreased autophagosomes(P<0.01), weakened fluorescence intensity of autophagosomes(P<0.01), down-regulated Beclin1, LC3-Ⅱ/LC3-Ⅰ, and HIF-1α(P<0.05 or P<0.01), and up-regulated p-Akt/Akt and p-mTOR/mTOR(P<0.01). AS-Ⅳ at low and medium doses exerted a protective effect against OGD-induced autophagic injury in PC12 cells by activating the Akt/mTOR pathway, subsequently influencing HIF-1α. The high-dose AS-Ⅳ group did not show a statistically significant difference compared with the OGD group. This study provides a certain target reference for the prevention and treatment of OGD-induced cellular autophagic injury by AS-Ⅳ and accumulates laboratory data for the secondary development of Astragali Radix and AS-Ⅳ.
Rats
;
Animals
;
PC12 Cells
;
Proto-Oncogene Proteins c-akt/genetics*
;
Glucose/therapeutic use*
;
Oxygen/metabolism*
;
Beclin-1/pharmacology*
;
TOR Serine-Threonine Kinases/metabolism*
;
Autophagy
;
Apoptosis
;
Reperfusion Injury/drug therapy*

Result Analysis
Print
Save
E-mail