1.Hydrogen-rich water reduces cell damage by reducing excessive autophagy in mouse neuronal cells after oxygen glucose deprivation/reoxygenation.
Yehong LI ; Ying LIU ; Junling TAO ; Shixin LI
Chinese Critical Care Medicine 2023;35(6):633-637
OBJECTIVE:
To investigate whether hydrogen-rich water exerts a protective effect against cellular injury by affecting the level of autophagy after oxygen glucose deprivation/reoxygenation (OGD/R) in a mouse hippocampal neuronal cell line (HT22 cells).
METHODS:
HT22 cells in logarithmic growth phase were cultured in vitro. Cell viability was detected by cell counting kit-8 (CCK-8) assay to find the optimal concentration of Na2S2O4. HT22 cells were divided into control group (NC group), OGD/R group (sugar-free medium+10 mmol/L Na2S2O4 treated for 90 minutes and then changed to normal medium for 4 hours) and hydrogen-rich water treatment group (HW group, sugar-free medium+10 mmol/L Na2S2O4 treated for 90 minutes and then changed to medium containing hydrogen-rich water for 4 hours). The morphology of HT22 cells was observed by inverted microscopy; cell activity was detected by CCK-8 method; cell ultrastructure was observed by transmission electron microscopy; the expression of microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 was detected by immunofluorescence; the protein expression of LC3II/I and Beclin-1, markers of cellular autophagy, was detected by Western blotting.
RESULTS:
Inverted microscopy showed that compared with the NC group, the OGD/R group had poor cell status, swollen cytosol, visible cell lysis fragments and significantly lower cell activity [(49.1±2.7)% vs. (100.0±9.7)%, P < 0.01]; compared with the OGD/R group, the HW group had improved cell status and remarkably higher cell activity [(63.3±1.8)% vs. (49.1±2.7)%, P < 0.01]. Transmission electron microscopy showed that the neuronal nuclear membrane of cells in the OGD/R group was lysed and a higher number of autophagic lysosomes were visible compared with the NC group; compared with the OGD/R group, the neuronal damage of cells in the HW group was reduced and the number of autophagic lysosomes was notably decreased. The results of immunofluorescence assay showed that the expressions of LC3 and Beclin-1 were outstandingly enhanced in the OGD/R group compared with the NC group, and the expressions of LC3 and Beclin-1 were markedly weakened in the HW group compared with the OGD/R group. Western blotting assay showed that the expressions were prominently higher in both LC3II/I and Beclin-1 in the OGD/R group compared with the NC group (LC3II/I: 1.44±0.05 vs. 0.37±0.03, Beclin-1/β-actin: 1.00±0.02 vs. 0.64±0.01, both P < 0.01); compared with the OGD/R group, the protein expression of both LC3II/I and Beclin-1 in the HW group cells were notably lower (LC3II/I: 0.54±0.02 vs. 1.44±0.05, Beclin-1/β-actin: 0.83±0.07 vs. 1.00±0.02, both P < 0.01).
CONCLUSIONS
Hydrogen-rich water has a significant protective effect on OGD/R-causing HT22 cell injury, and the mechanism may be related to the inhibition of autophagy.
Mice
;
Animals
;
Oxygen/metabolism*
;
Beclin-1/pharmacology*
;
Glucose/metabolism*
;
Actins
;
Sincalide
;
Autophagy/physiology*
;
Hydrogen/pharmacology*
;
Reperfusion Injury
;
Apoptosis
2.Impaired autophagy activity-induced abnormal differentiation of bone marrow stem cells is related to adolescent idiopathic scoliosis osteopenia.
Hongqi ZHANG ; Guanteng YANG ; Jiong LI ; Lige XIAO ; Chaofeng GUO ; Yuxiang WANG
Chinese Medical Journal 2023;136(17):2077-2085
BACKGROUND:
Osteopenia has been well documented in adolescent idiopathic scoliosis (AIS). Bone marrow stem cells (BMSCs) are a crucial regulator of bone homeostasis. Our previous study revealed a decreased osteogenic ability of BMSCs in AIS-related osteopenia, but the underlying mechanism of this phenomenon remains unclear.
METHODS:
A total of 22 AIS patients and 18 age-matched controls were recruited for this study. Anthropometry and bone mass were measured in all participants. Bone marrow blood was collected for BMSC isolation and culture. Osteogenic and adipogenic induction were performed to observe the differences in the differentiation of BMSCs between the AIS-related osteopenia group and the control group. Furthermore, a total RNA was extracted from isolated BMSCs to perform RNA sequencing and subsequent analysis.
RESULTS:
A lower osteogenic capacity and increased adipogenic capacity of BMSCs in AIS-related osteopenia were revealed. Differences in mRNA expression levels between the AIS-related osteopenia group and the control group were identified, including differences in the expression of LRRC17 , DCLK1 , PCDH7 , TSPAN5 , NHSL2 , and CPT1B . Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed several biological processes involved in the regulation of autophagy and mitophagy. The Western blotting results of autophagy markers in BMSCs suggested impaired autophagic activity in BMSCs in the AIS-related osteopenia group.
CONCLUSION
Our study revealed that BMSCs from AIS-related osteopenia patients have lower autophagic activity, which may be related to the lower osteogenic capacity and higher adipogenic capacity of BMSCs and consequently lead to the lower bone mass in AIS patients.
Humans
;
Adolescent
;
Scoliosis/genetics*
;
Cell Differentiation/physiology*
;
Osteogenesis/genetics*
;
Bone Diseases, Metabolic/genetics*
;
Kyphosis
;
Autophagy/genetics*
;
Bone Marrow Cells
;
Cells, Cultured
;
Doublecortin-Like Kinases
3.Autophagy and cancer treatment: four functional forms of autophagy and their therapeutic applications.
Zhaoshi BAI ; Yaling PENG ; Xinyue YE ; Zhixian LIU ; Yupeng LI ; Lingman MA
Journal of Zhejiang University. Science. B 2022;23(2):89-101
Cancer is the leading cause of death worldwide. Drugs play a pivotal role in cancer treatment, but the complex biological processes of cancer cells seriously limit the efficacy of various anticancer drugs. Autophagy, a self-degradative system that maintains cellular homeostasis, universally operates under normal and stress conditions in cancer cells. The roles of autophagy in cancer treatment are still controversial because both stimulation and inhibition of autophagy have been reported to enhance the effects of anticancer drugs. Thus, the important question arises as to whether we should try to strengthen or suppress autophagy during cancer therapy. Currently, autophagy can be divided into four main forms according to its different functions during cancer treatment: cytoprotective (cell survival), cytotoxic (cell death), cytostatic (growth arrest), and nonprotective (no contribution to cell death or survival). In addition, various cell death modes, such as apoptosis, necrosis, ferroptosis, senescence, and mitotic catastrophe, all contribute to the anticancer effects of drugs. The interaction between autophagy and these cell death modes is complex and can lead to anticancer drugs having different or even completely opposite effects on treatment. Therefore, it is important to understand the underlying contexts in which autophagy inhibition or activation will be beneficial or detrimental. That is, appropriate therapeutic strategies should be adopted in light of the different functions of autophagy. This review provides an overview of recent insights into the evolving relationship between autophagy and cancer treatment.
Antineoplastic Agents/therapeutic use*
;
Apoptosis
;
Autophagy/physiology*
;
Humans
;
Necrosis/drug therapy*
;
Neoplasms/therapy*
4.Effect of Notch1 on extracellular matrix deposition in the renal tubulointerstitium of diabetes.
Xing-Mei LIU ; Yan SHEN ; Yu HE ; Xiao-Xia BAN ; Hong-Jun JIN ; Xiao-Lan HE ; He TIAN
Acta Physiologica Sinica 2022;74(3):392-400
The aim of the present study was to observe the effects of Notch1 and autophagy on extracellular matrix deposition in renal tubulointerstitium of diabetes and to explore the mechanism. The mice were randomly divided into normal control group (db/m mice) and diabetes group (db/db mice). After 12 weeks of feeding, the mice were sacrificed and the corresponding biochemical indexes were measured. Rat renal tubular epithelial cells NRK52E were cultured under normal glucose (NG) and high glucose (HG) respectively, and the expression of Notch1 and LC3 proteins were detected by Western blotting. Autophagosomes in NRK52E cells with overexpressed and knockdown Notch1 under NG and HG conditions were observed by confocal microscope, and the expression changes of Notch1, Collagen-I and III protein were detected by immunofluorescence. The results showed that the Notch1 and Collagen-III expressions were increased (P < 0.01) and the LC3 expression was decreased (P < 0.05) in db/db mice compared with db/m mice. In vitro, the Notch1 was increased (P < 0.01) and the LC3 expression was decreased significantly (P < 0.01) in NRK52E cells of HG group compared with NG group. There was no significant change of Notch1 and LC3 expression between the mannitol (MA) group and the NG group. Autophagy was decreased and extracellular matrix deposition was aggravated when Notch1 was overexpressed. In contrast, autophagy was increased and extracellular matrix deposition was relieved by knockdown of Notch1 under HG conditions. In conclusion, Notch1 protein expression was increased and autophagy was reduced in renal tissue of diabetes and renal tubular epithelial cells under HG. The extracellular matrix deposition in the renal tubulointerstitium was relieved by regulating autophagy after the knockdown of Notch1.
Animals
;
Autophagy/physiology*
;
Diabetes Mellitus
;
Extracellular Matrix
;
Glucose/pharmacology*
;
Kidney
;
Mice
;
Rats
;
Receptor, Notch1/genetics*
5.Vitamin D/vitamin D receptor, autophagy, and infection.
Yu HOU ; Jinghui LI ; Chao DENG
Journal of Central South University(Medical Sciences) 2022;47(6):780-785
Vitamin D plays an important role in mineral and bone homeostasis, immune responses, cardiovascular function and keratinocyte proliferation and differentiation. Vitamin D performs most of its functions by binding to vitamin D receptors (VDR), which interact with other intracellular signaling pathways to regulate bone metabolism, inflammation, immunity, cell cycle progression and apoptosis. Autophagy is a basic stress response in yeast, plants and mammals, and plays a critical role in maintaining optimal functional states at the level of cells and organs. Vitamin D/VDR plays an anti-infection role via inducing and regulating autophagy.
Animals
;
Autophagy
;
Humans
;
Inflammation
;
Mammals/metabolism*
;
Receptors, Calcitriol/metabolism*
;
Vitamin D/physiology*
;
Vitamins
6.Exercise regulates lipid metabolism via lipophagy and its molecular mechanisms.
Meng-Ying LI ; Ling-Jie LI ; Chun-Wei MA ; Bing-Hong GAO
Acta Physiologica Sinica 2022;74(2):309-319
Lipophagy is a kind of selective autophagy, which can selectively identify and degrade lipid droplets and plays an important role in regulating cellular lipid metabolism and maintaining intracellular lipid homeostasis. Exercise can induce lipophagy and it is also an effective means of reducing body fat. In this review, we summarized the relationship between exercise and lipophagy in the liver, pancreas, adipose tissue, and the possible molecular mechanisms to provide a new clue for the prevention and treatment of fatty liver, obesity and other related metabolic diseases by exercise.
Autophagy/physiology*
;
Humans
;
Lipid Droplets/metabolism*
;
Lipid Metabolism/physiology*
;
Liver
;
Metabolic Diseases/metabolism*
7.Role of autophagy in the maintenance of skeletal muscle mass.
A-Ying LIU ; Quan-Bing ZHANG ; Yun ZHOU ; Feng WANG
China Journal of Orthopaedics and Traumatology 2022;35(4):374-378
As an important exercise and energy metabolism organ of the human body, the normal maintenance of skeletal muscle mass is essential for the body to perform normal physiological functions. The autophagy-lysosome (AL) pathway is a physiological or pathological mechanism that is ubiquitous in normal and diseased cells. It plays a key role in the maintaining of protein balance, removing damaged organelles, and the stability of internal environment. The smooth progress of the autophagy process needs to go through multiple steps, which are completed under the coordinated action of multiple factors. Autophagy maintains the muscle homeostasis of a healthy body by removing cell components such as damaged myofibrils and isolated cytoplasmic proteins. Autophagy could also provide the initial energy required for cell proliferation, promote muscle regeneration and remodeling after injury. At the same time, autophagy disorder is also an important cause of age-related skeletal muscle atrophy. Autophagy could affect the response of skeletal muscle to exercise, and increasing the level of basic autophagy is beneficial to improve the adaptive response of skeletal muscle to exercise. This article summarizes the role and pathways of autophagy in the maintenance of skeletal muscle quality, in order to provide effective rehabilitation strategies for clinical prevention and treatment of muscle atrophy.
Autophagy/physiology*
;
Exercise/physiology*
;
Humans
;
Muscle, Skeletal/pathology*
;
Muscular Atrophy/pathology*
;
Signal Transduction
8.Fibroblast growth factor 21 plays a protective role in cardiovascular diseases by inducing autophagy.
Ying-Kai LI ; Song-Yuan HE ; Cong WANG ; Yu-Chen SHI ; Jing-Hua LIU
Acta Physiologica Sinica 2022;74(4):633-638
Fibroblast growth factor 21 (FGF21) is a growth factor with endocrine function in the fibroblast growth factor family. Previous reports have shown that FGF21 is involved in the regulation of energy metabolism and plays a protective role in cardiovascular diseases such as coronary heart disease, diabetes, non-alcoholic fatty liver disease and so on. Recent studies have found that FGF21 can induce autophagy in a variety of tissues and organs, and autophagy is involved in many pathological processes of cardiovascular diseases, including vascular calcification, atherosclerosis, and myocardial ischemia-reperfusion injury. Therefore, FGF21 may play a protective role in a variety of cardiovascular diseases by regulating autophagy. This article reviews the research progress on the protective role of FGF21 in cardiovascular diseases by inducing autophagy.
Autophagy/physiology*
;
Cardiovascular Diseases/metabolism*
;
Fibroblast Growth Factors/metabolism*
;
Humans
;
Myocardial Reperfusion Injury/metabolism*
9.Effects of exercises with different durations and intensities on mitochondrial autophagy and FUNDC1 expression in rat skeletal muscles.
Liang YU ; Xiao-Yu SHI ; Zi-Ming LIU ; Zhen WANG ; Lin LI ; Jiu-Xiang GAO ; Xiao-Ran LIU ; Rui-Yuan WANG
Acta Physiologica Sinica 2020;72(5):631-642
The aim of the present study was to investigate the effects of exercises with different durations and intensities on mitochondrial autophagy and FUNDC1 in rat skeletal muscles. Sixty male Sprague-Dawley rats were randomly divided into 2- and 4-week control groups (Con), moderate-intensity exercise groups (M-ex groups, treadmill exercise, 16 m/min, 1 h/d, 6 d/week), and high-intensity exercise groups (Hi-ex groups, treadmill exercise, 35 m/min, 20 min/d, 6 d/week). The bilateral soleus muscles were separated after the intervention, and paraffin sections were prepared for transmission electron microscopy. ELISA method was used to detect the content of citrate synthase (CS). The co-localizations of microtubule-associated protein 1 light chain 3 (LC3)/cytochrome c oxidase IV (COX-IV), FUNDC1/COX-IV and LC3/FUNDC1 were observed by immunofluorescent staining in frozen sections. The skeletal muscle mitochondria were extracted, and the expression of autophagy-related proteins, including AMPKα, p-AMPKα, Unc-51 like kinase 1 (ULK1), FUNDC1, LC3 and p62, were detected by Western blot. The results showed that exercise increased mitochondrial function, i.e. peroxisome proliferator-activated receptor γ co-activator-1α (PGC-1α), COX-I protein expression levels and CS content. There was no difference of mitochondrial function parameters between 2-week M-ex and 2-week Hi-ex groups, while mitochondrial function of 4-weeks Hi-ex group was significantly lower than that of 4-week M-ex group. Under the same exercise intensity, mitochondrial autophagy activation in skeletal muscle of 4-week exercise was higher than that in 2-week exercise group; Under the same duration of exercise, mitochondrial autophagy activation of Hi-ex group was higher than that in M-ex group. Both 2- and 4-week exercise intervention increased LC3/COX-IV, COX-IV/FUNDC1, and FUNDC1/LC3 co-localizations. Exercise increased LC3-II/LC3-I ratio, down-regulated p62 protein expression level, up-regulated FUNDC1, ULK1 protein expression levels and AMPKα phosphorylation, and the changes of these proteins in 4-week Hi-ex group were significantly greater than those in 4-week M-ex group. These results suggest exercise induces mitochondrial autophagy in skeletal muscles, and the activity of autophagy is related to the duration and intensity of exercise. The induction mechanism of exercise may involve the mediation of FUNDC1 expression through AMPK-ULK1 pathway.
Animals
;
Autophagy
;
Exercise Therapy
;
Humans
;
Male
;
Membrane Proteins/physiology*
;
Mitochondria
;
Mitochondrial Proteins/physiology*
;
Muscle, Skeletal/metabolism*
;
Rats
;
Rats, Sprague-Dawley
10.MicroRNAs involved in drug resistance of breast cancer by regulating autophagy.
Nan WEN ; Qing LV ; Zheng-Gui DU
Journal of Zhejiang University. Science. B 2020;21(9):690-702
Autophagy is a conserved catabolic process characterized by degradation and recycling of cytosolic components or organelles through a lysosome-dependent pathway. It has a complex and close relationship to drug resistance in breast cancer. MicroRNAs (miRNAs) are small noncoding molecules that can influence numerous cellular processes including autophagy, through the posttranscriptional regulation of gene expression. Autophagy is regulated by many proteins and pathways, some of which in turn have been found to be regulated by miRNAs. These miRNAs may affect the drug resistance of breast cancer. Drug resistance is the main cause of distant recurrence, metastasis and death in breast cancer patients. In this review, we summarize the causative relationship between autophagy and drug resistance of breast cancer. The roles of autophagy-related proteins and pathways and their associated miRNAs in drug resistance of breast cancer are also discussed.
Autophagy/physiology*
;
Breast Neoplasms/pathology*
;
Drug Resistance, Neoplasm
;
Female
;
Gene Expression Regulation, Neoplastic
;
Humans
;
MicroRNAs/physiology*
;
Signal Transduction/physiology*

Result Analysis
Print
Save
E-mail