2.Corticostriatal Neurons in the Anterior Auditory Field Regulate Frequency Discrimination Behavior.
Zhao-Qun WANG ; Hui-Zhong WEN ; Tian-Tian LUO ; Peng-Hui CHEN ; Yan-Dong ZHAO ; Guang-Yan WU ; Ying XIONG
Neuroscience Bulletin 2023;39(6):962-972
The anterior auditory field (AAF) is a core region of the auditory cortex and plays a vital role in discrimination tasks. However, the role of the AAF corticostriatal neurons in frequency discrimination remains unclear. Here, we used c-Fos staining, fiber photometry recording, and pharmacogenetic manipulation to investigate the function of the AAF corticostriatal neurons in a frequency discrimination task. c-Fos staining and fiber photometry recording revealed that the activity of AAF pyramidal neurons was significantly elevated during the frequency discrimination task. Pharmacogenetic inhibition of AAF pyramidal neurons significantly impaired frequency discrimination. In addition, histological results revealed that AAF pyramidal neurons send strong projections to the striatum. Moreover, pharmacogenetic suppression of the striatal projections from pyramidal neurons in the AAF significantly disrupted the frequency discrimination. Collectively, our findings show that AAF pyramidal neurons, particularly the AAF-striatum projections, play a crucial role in frequency discrimination behavior.
Acoustic Stimulation/methods*
;
Neurons/physiology*
;
Auditory Cortex/physiology*
;
Auditory Perception
;
Pyramidal Cells
3.Excitatory Crossmodal Input to a Widespread Population of Primary Sensory Cortical Neurons.
Yuan-Jie XIAO ; Lidan WANG ; Yu-Zhang LIU ; Jiayu CHEN ; Haoyu ZHANG ; Yan GAO ; Hua HE ; Zheng ZHAO ; Zhiru WANG
Neuroscience Bulletin 2022;38(10):1139-1152
Crossmodal information processing in sensory cortices has been reported in sparsely distributed neurons under normal conditions and can undergo experience- or activity-induced plasticity. Given the potential role in brain function as indicated by previous reports, crossmodal connectivity in the sensory cortex needs to be further explored. Using perforated whole-cell recording in anesthetized adult rats, we found that almost all neurons recorded in the primary somatosensory, auditory, and visual cortices exhibited significant membrane-potential responses to crossmodal stimulation, as recorded when brain activity states were pharmacologically down-regulated in light anesthesia. These crossmodal cortical responses were excitatory and subthreshold, and further seemed to be relayed primarily by the sensory thalamus, but not the sensory cortex, of the stimulated modality. Our experiments indicate a sensory cortical presence of widespread excitatory crossmodal inputs, which might play roles in brain functions involving crossmodal information processing or plasticity.
Animals
;
Auditory Cortex/physiology*
;
Neuronal Plasticity/physiology*
;
Neurons
;
Rats
;
Thalamus
;
Visual Cortex/physiology*
4.Auditory response patterns of mouse primary auditory cortex to sound stimuli.
Qin Hong ZHENG ; Chang Bao SONG ; Fei Xue LIANG
Journal of Southern Medical University 2022;42(8):1212-1220
OBJECTIVE:
To investigate the auditory response patterns of mouse primary auditory cortex (A1) neurons.
METHODS:
In vivo cell-attached recordings and neural network modeling were performed to detect the changes in response patterns of A1 neurons of awake C57BL/6J mice to sound stimulation with varying lengths. A1 neuron signals were recorded for 216 neurons in 20 awake mice using a target sound stimulation sequence, and the classification and response characteristics of A1 neuron response patterns were examined using post-stimulus spike time histograms. To simulate the diversity of the A1 neuron response patterns, an A1 neuron model was established based on the Wilson-Cowan model and integral-firing model. The neuron connection weight parameters in the model were calculated by examining the micro loop structure of the pyramidal neurons, parvalbumin neurons, and somatostatin neurons in the A1 region, and the A1 neural network information coding model was constructed.
RESULTS:
The Onset response neurons only had fast spike response within 10 to 40 ms after the beginning of noise stimulation (122 neurons). The Sustained response neurons had spike response continuously during the noise stimulation (26 neurons). The On-off response neurons had fast spike response after the beginning and the end of noise stimulation (40 neurons). The Offset response neurons only had fast spike response within 10 to 40 ms after the end of noise stimulation (22 neurons). In the neural network model, the Onset peak neural activities of A1 pyramidal neurons, parvalbumin neurons, and somatostatin neurons were 0.7483, 0.5236 and 0.9427, respectively, and their response half peak widths were 18.5 ms, 12 ms and 31 ms during the 100 ms noise stimulation, respectively. By changing the feedforward excitation and synaptic inhibition time constants in the model, the neurons generated numerous different types of spike train.
CONCLUSION
The auditory response of mouse A1 neurons to sound stimuli shows mainly the Onset, Sustained, On-off, and Offset response patterns.
Acoustic Stimulation
;
Animals
;
Auditory Cortex/physiology*
;
Mice
;
Mice, Inbred C57BL
;
Parvalbumins
;
Somatostatin
5.The function of auditory cortex in the elderly using functional near-infrared spectroscopy technology.
Liu YANG ; You Nuo CHEN ; Song Jian WANG ; Yuan WANG ; Ting CHEN ; Ying LIANG ; Shuo WANG
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2022;57(4):458-466
Objective: Functional near-infrared spectroscopy (fNIRS) was used to study the effect of aging on the neuroimaging characteristics of cerebral cortex in the process of speech perception. Method: Thirty-four adults with normal hearing were recruited from March 2021 to June 2021, including 17 in the young group, with 6 males, 11 females, age (32.1±5.0) years, age range 20-39 years. and 17 in the elderly group, with 6 males, 11 females, age (63.2±2.8) years, age range 60-70 years. The test material was the sentence table of the Mandarin Hearing Test in Noise (MHINT). The task state block experiment design was adopted, and the temporal lobe, Broca's area, Wernicke's area, motor cortex were used as regions of interest. Objective brain imaging technology (fNIRS) combined with subjective psychophysical testing method was used to analyze the activation area and degree of cerebral cortex related to auditory speech perception in the elderly and young people under different listening conditions (quiet, signal-to-noise ratio of 10 dB, 5 dB, 0 dB, -5 dB). SPSS 23 software was used for statistical analysis. Result: The activation area and degree of activation in the elderly group were lower than those in the young group under each task condition; The number of activation channels in the young group were significantly more than those in the old group, and the number of activation channels in the left hemisphere were more than those in the right hemisphere, but there was no difference in the number of activation channels. There were more channels affected by age in the left hemisphere than in the right hemisphere. The activation degree of the young group when the signal-to-noise ratio was 0 dB was significantly higher than that of other signal-to-noise ratio conditions (P<0.05), but there was no significant difference in the old group under the five conditions (P>0.05). The speech recognition score of the young group was higher than that of the old group under all conditions. When the quiet and signal-to-noise ratio was 10 dB, the correct score of the two groups was equal or close to 100%. With the gradual decrease of signal-to-noise ratio, there was a significant difference between the two groups when the signal-to-noise ratio was 5 dB. The speech recognition accuracy of the young group decreased significantly when the signal-to-noise ratio was 0 dB, while that of the old group decreased significantly when the signal-to-noise ratio was 5 dB. Conclusions: With the increase of age, the speech perception in noisy environment and the activity of cerebral cortex gradually deteriorate, and the speech dominance hemisphere (left hemisphere) will be significantly affected by aging. The overall activation area and activation degree of the elderly under different speech tasks are lower than those of the young.
Acoustic Stimulation/methods*
;
Adolescent
;
Adult
;
Aged
;
Auditory Cortex/physiology*
;
Female
;
Humans
;
Male
;
Middle Aged
;
Spectroscopy, Near-Infrared
;
Speech Perception/physiology*
;
Technology
;
Young Adult
6.Neural mechanism for modulation of auditory response of the striatum by locomotion.
Wei Long HUANG ; Fei Xue LIANG
Journal of Southern Medical University 2022;42(5):766-771
OBJECTIVE:
To explore whether the characteristic responses to sound stimulations of the auditory neurons in the striatum is regulated in different behavioral states.
METHODS:
The auditory neurons in the striatum of awake C57BL/6J mice were selected for this study. We recorded the auditory response of the striatum to noises over a long period of time by building a synchronous in vivo electrophysiological and locomotion recording system and using glass microelectrode attachment recording. By analyzing the running speed of the mice, the behavioral states of the mice were divided into the quiet state and the active state, and the spontaneous activity and evoked responses of the auditory neurons in the striatum were analyzed in these two states.
RESULTS:
Compared with those recorded in the quiet state, the spontaneous activity of the auditory neurons in the striatum of the mice increased significantly (37.06±12.02 vs 18.51±10.91, P < 0.001) while the auditory response of the neurons decreased significantly (noise intensity=60 dB, 3.45±2.99 vs 3.04±2.76, P < 0.001) in the active state.
CONCLUSION
Locomotion has a significant inhibitory effect on the auditory response of the striatum, which may importantly contribute to the decline of sound information recognition ability in the active state.
Acoustic Stimulation
;
Animals
;
Auditory Cortex/physiology*
;
Evoked Potentials, Auditory
;
Locomotion/physiology*
;
Mice
;
Mice, Inbred C57BL
;
Neurons
7.Effect of electrical stimulation at auricular points combined with sound masking on the expression of CREB, BDNF and TrkB in the auditory cortex of tinnitus rats.
Song-Bai YANG ; Li-Yan PENG ; Zhi-Gang MEI ; Ling-Jing TAN ; Ya-Guang HUANG ; Zhi-Tao FENG ; San-Jin CAI ; Wen-Han MA ; Ding-Qi ZHANG
Chinese Acupuncture & Moxibustion 2019;39(6):637-642
OBJECTIVE:
To explore the effect of electrical stimulation at auricular points (EAS) combined with sound masking on the expression of cAMP-response element binding protein (CREB), brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB) in the auditory cortex of tinnitus rats.
METHODS:
A total of 27 adult male SD rats were randomly divided into a control group, a model group and an EAS group. The rats in the model group and the EAS group were intervened with intraperitoneal injection of sodium salicylate to induce tinnitus model, while the rats in the control group were intervened with injection of 0.9% NaCl solution. After the model was successfully established, the rats in the EAS group were treated with electrical stimulation at "Shenmen" (TF) and "Yidan" (CO), combined with sound masking; the treatment was given once a day for 15 days. The gap prepulse inhibition of acoustic startle (GPIAS) and prepulse inhibition (PPI) testing were performed using the acoustic startle reflex starter package for rats. The expression of BDNF, TrkB, CREB and p-CREB in the auditory cortex of each group were measured with Western Blot analysis.
RESULTS:
① Compared with the control group, the GPIAS values in 12 kHz, 16 kHz, 20 kHz and 28 kHz were significantly decreased in the model group (all <0.05); compared with the model group, GPIAS values in 12 kHz, 16 kHz, 20 kHz and 28 kHz were significantly increased in the EAS group (all <0.05). ② Compared with the control group, the expression of BDNF and p-CREB in the model group was significantly increased (<0.01), and the expression of TrkB in the model group was significantly increased (<0.05); the differences of expression of BDNF, TrkB, CREB and p-CREB between the model group and the EAS group had no statistics significance (all >0.05).
CONCLUSION
EAS could improve the GPIAS values of high-frequency background sound in tinnitus rats, which may be related with the upregulation of the BDNF/TrkB/CREB signaling pathway in the auditory cortex, leading to the reversion of the maladaptive plasticity.
Acupuncture Points
;
Animals
;
Auditory Cortex
;
Brain-Derived Neurotrophic Factor
;
metabolism
;
Cyclic AMP Response Element-Binding Protein
;
metabolism
;
Electric Stimulation
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, trkB
;
metabolism
;
Tinnitus
;
metabolism
;
therapy
8.Abrupt Change in Electrophysiological Properties Begins From Postnatal Day 7 Before Hearing Onset in the Developing Mice Auditory Cortical Layer II/III Neurons
Clinical and Experimental Otorhinolaryngology 2019;12(3):279-286
OBJECTIVES: In the developing auditory cortex, maturation of electrophysiological properties and cell types before and after hearing onset has been reported previously. However, the exact timing of firing pattern change has not been reported. In this study, firing pattern change was investigated from postnatal day 3 (P3) to P12 in auditory cortical layer II/III neurons to investigate whether firing pattern changes dramatically after a specific point during development. METHODS: ICR mice pups aged from P3 to P12 were sacrificed to obtain 300-mm-thick brain slices containing the primary auditory cortex. From cortical layer II/III neurons, the patterns of action potential firing generated by current injection were examined using whole cell current clamp technique and the characteristics of Na⁺ currents involved in action potential firing were investigated using whole cell voltage clamp technique. RESULTS: From P3 to P6, most cells did not show action potential firing (29 of 46 cells), and some cells responding to current injection showed a single action potential at the initial depolarizing current step (17 of 46 cells). This firing pattern changes from P7. From P7 to P9, cells begin to show regular spiking to current injection. The spiking frequency increased after P10. In studying Na⁺ current with whole cell voltage clamp, Na⁺ current densities increased gradually (32.0±2.0 pA/pF [P3–P6, n=7], 51.2±2.0 pA/pF [P7–P9, n=13], and 69.5±3.7 pA/pF [P10–P12, n=13]) in low external [Na⁺] condition. Na⁺ current recovery was accelerated and inactivation curves shifted to hyperpolarization with age. CONCLUSION: As regular spiking cells were observed from P7 but never from P3 to P6, P7 might be regarded as an important milestone in the development of auditory cortical layer II/III neurons. This change might mainly result from the increase in Na⁺ current density.
Action Potentials
;
Animals
;
Auditory Cortex
;
Brain
;
Fires
;
Hearing
;
Mice
;
Mice, Inbred ICR
;
Neurons
9.Memantine Attenuates Salicylate-induced Tinnitus Possibly by Reducing NR2B Expression in Auditory Cortex of Rat
Chul Ho JANG ; Sueun LEE ; Il Yong PARK ; Anji SONG ; Changjong MOON ; Goang Won CHO
Experimental Neurobiology 2019;28(4):495-503
Memantine, a noncompetitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, suppresses the release of excessive levels of glutamate that may induce neuronal excitation. Here we investigated the effects of memantine on salicylate-induced tinnitus model. The expressions of the activity-regulated cytoskeleton-associated protein (ARC) and tumor necrosis factor-alpha (TNF α)genes; as well as the NMDA receptor subunit 2B (NR2B) gene and protein, were examined in the SH-SY5Y cells and the animal model. We also used gap-prepulse inhibition of the acoustic startle reflex (GPIAS) and noise burst prepulse inhibition of acoustic startle, and the auditory brainstem level (electrophysiological recordings of auditory brainstem responses, ABR) and NR2B expression level in the auditory cortex to evaluate whether memantine could reduce salicylate-mediated behavioral disturbances. NR2B was significantly upregulated in salicylate-treated cells, but downregulated after memantine treatment. Similarly, expression of the inflammatory cytokine genes TNFα and immediate-early gene ARC was significantly increased in the salicylate-treated cells, and decreased when the cells were treated with memantine. These results were confirmed by NR2B immunocytochemistry. GPIAS was attenuated to a significantly lesser extent in rats treated with a combination of salicylate and memantine than in those treated with salicylate only. The mean ABR threshold in both groups was not significant different before and 1 day after the end of treatment. Additionally, NR2B protein expression in the auditory cortex was markedly increased in the salicylate-treated group, whereas it was reduced in the memantine-treated group. These results indicate that memantine is useful for the treatment of salicylate-induced tinnitus.
Acoustics
;
Animals
;
Auditory Cortex
;
Brain Stem
;
Evoked Potentials, Auditory, Brain Stem
;
Genes, Immediate-Early
;
Glutamic Acid
;
Immunohistochemistry
;
Integrin alpha2
;
Memantine
;
Models, Animal
;
N-Methylaspartate
;
Neurons
;
Noise
;
Prepulse Inhibition
;
Rats
;
Reflex, Startle
;
Tinnitus
;
Tumor Necrosis Factor-alpha
10.Severe Temporal Hyper-Activated States Caused by Noise in Tinnitus and Hyperacusis with Normal Hearing
Journal of Audiology & Otology 2019;23(3):160-166
Lots of neuroimaging and animal studies have revealed that tinnitus and hyperacusis share the same patterns in the bottom up central auditory process. The aim was to identify the abnormal central patterns commonly observed in both tinnitus and hyperacusis in humans. We investigated two cases of normal hearing: a tinnitus patient and a hyperacusis patient. We compared the differences between the severe temporal hyper-activated state (STHS), with spikes, fast beta and gamma frequencies after noise exposure, and the mild temporal hyper-activated state (MTHS), in no sound exposed condition. The power of the gamma band in the two cases was increased in both auditory cortices compared to the other brain regions. Our results of human with normal hearing were the first to identify how tinnitus and hyperacusis caused by sound are abnormally active and how they maintain constant pathological states.
Animals
;
Auditory Cortex
;
Brain
;
Electroencephalography
;
Hearing
;
Humans
;
Hyperacusis
;
Neuroimaging
;
Noise
;
Tinnitus

Result Analysis
Print
Save
E-mail