1.Omalizumab Treats Aspirin-Induced Asthma Complicated With Nasosinusitis and Otitis Media:Report of One Case.
Rui TANG ; Shu-Bin LEI ; Yi WANG
Acta Academiae Medicinae Sinicae 2023;45(4):699-702
Omalizumab,as a biological agent targeting IgE,is a recombinant humanized monoclonal antibody and the first targeted drug approved for treating moderate-to-severe bronchial asthma.By reviewing one case of aspirin-induced asthma complicated with nasosinusitis and otitis media,we discussed the value of omalizumab in the treatment of asthma and its complications,aiming to provide a reference for clinical practice.
Humans
;
Omalizumab/adverse effects*
;
Asthma, Aspirin-Induced
;
Asthma/drug therapy*
;
Otitis Media/drug therapy*
2.A real world study of anti-IgE monoclonal antibody in the treatment of allergic united airway disease.
Hai Jing SUI ; Zhen ZHEN ; Quan Gui WANG ; Tie Chuan CONG ; Jun Jun HUANG ; Yan HU
Chinese Journal of Preventive Medicine 2023;57(2):273-280
Objective: To investigate the clinical efficacy and safety of anti-IgE monoclonal antibody (omazumab) in the treatment of allergic united airway disease (UAD) in the real-wold. Methods: Retrospective cohort study summarizes the case data of patients with allergic united airway disease who were treated with anti IgE monoclonal antibody (omalizumab) for more than 16 weeks from March 1, 2018 to June 30, 2022 in the Peking University First Hospital.The allergic UAD is defined as allergic asthma combined with allergic rhinitis (AA+AR) or allergic asthma combined with chronic sinusitis with nasal polyps (AA+CRSwNP) or allergic asthma combined with allergic rhinitis and nasal polyps (AA+AR+CRSwNP). The control of asthma was evaluated by asthma control test (ACT), lung function test and fractional exhaled nitric oxide (FeNO). The AR was assessed by total nasal symptom score (TNSS). The CRSwNP was evaluated by nasal visual analogue scale (n-VAS), sino-nasal outcome test-22 (SNOT-22), nasal polyps score (TPS) and Lund-Mackay sinus CT grading system. The global evaluation of omalizumab for the treatment of allergic UADwas performed by Global Evaluation of Treatment Effectiveness(GETE).The drug-related side effects were also recorded. Matched t test and Wilcoxon signed-rank test were used to compare the score changes of IgE monoclonal antibody (omazumab) before and after treatment, and multivariate logistic regression analysis was used to determine the influencing factors of IgE monoclonal antibody (omazumab) response. Results: A total of 117 patients with UAD were enrolled, ranging in age from 19 to 77 years; The median age of patients was 48.7 years; Among them, 60 were male, ranging from 19 to 77 years old, with a median age of 49.9 years; There were 57 females, ranging from 19 to 68 years old, with a median age of 47.2 years. There were 32 cases in AA+AR subgroup, 59 cases in AA+CRSwNP subgroup, and 26 cases in AA+AR+CRSwNP subgroup. The total serum IgE level was 190.5 (103.8,391.3) IU/ml. The treatment course of anti IgE monoclonal antibody was 24 (16, 32) weeks. Compared with pre-treatment, omalizumab increased ACT from 20.0 (19.5,22.0) to 24.0 (23.0,25.0) (Z=-8.537, P<0.001), increased pre-bronchodilator FEV1 from 90.2 (74.8,103.0)% predicted value to 95.4 (83.2,106.0)% predicted value (Z=-5.315,P<0.001), increased FEV1/FVC from 80.20 (66.83,88.38)% to 82.72 (71.26,92.25)% (Z=-4.483,P<0.001), decreased FeNO from(49.1±24.8) ppb to (32.8±24.4) ppb (t=5.235, P<0.001), decreased TNSS from (6.5±2.6)to (2.4±1.9) (t=14.171, P<0.001), decreased n-VAS from (6.8±1.2) to (3.4±2.0)(t=14.448, P<0.001), decreased SNOT-22 from (40.0±7.9) to (21.3±10.2)(t=15.360, P<0.001), decreased TPS from (4.1±0.8) to (2.4±1.0)(t=14.718, P<0.001) and decreased Lund-Mackay CT score from (6.0±1.3) to (3.1±1.6)(t=17.012, P<0.001). The global response rate to omalizumab was 67.5%(79/117). The response rate in AA+AR (90.6%,29/32) was significantly higher than that in AA+CRSwNP (61.0%,36/59) and AA+AR+CRSwNP (53.8%,14/26) subgroups (χ2=11.144,P=0.004). Only 4 patients (3.4%,4/117) had mild side effects. Conclusion: The real-world study showed favorable effectiveness and safety of anti-IgE monoclonal antibody for treatment of allergic UAD. To provide basis for preventing the progress and precise treatment of allergic UAD.
Female
;
Humans
;
Male
;
Middle Aged
;
Young Adult
;
Adult
;
Aged
;
Nasal Polyps/drug therapy*
;
Omalizumab/therapeutic use*
;
Rhinitis/drug therapy*
;
Retrospective Studies
;
Asthma/diagnosis*
;
Rhinitis, Allergic/drug therapy*
;
Sinusitis/drug therapy*
;
Antibodies, Monoclonal/therapeutic use*
;
Chronic Disease
3.Research advances in chest tightness variant asthma.
Jia Ling CHEN ; Li SHA ; Chuan He LIU
Chinese Journal of Preventive Medicine 2023;57(3):327-332
Chest tightness variant asthma (CTVA) is a special type of asthma with chest tightness as the only or main symptom. Due to the lack of typical asthma symptoms such as coughing, wheezing, shortness of breath, and positive signs in chest, it is easy to be missed or misdiagnosed in clinical practice. The onset of chest tightness variant asthma is insidious, and there is few research and attention both domestic and international, so there is no unified diagnosis and treatment standard especially in childhood asthma. This article expounds the related research advances in chest tightness variant asthma, in order to increase clinical attention and provide reference and basis for the prevention of the disease as well as the formulation of diagnosis and treatment strategies.
Humans
;
Asthma/drug therapy*
;
Cough
;
Surveys and Questionnaires
;
Records
4.Eligibility of C-BIOPRED severe asthma cohort for type-2 biologic therapies.
Zhenan DENG ; Meiling JIN ; Changxing OU ; Wei JIANG ; Jianping ZHAO ; Xiaoxia LIU ; Shenghua SUN ; Huaping TANG ; Bei HE ; Shaoxi CAI ; Ping CHEN ; Penghui WU ; Yujing LIU ; Jian KANG ; Yunhui ZHANG ; Mao HUANG ; Jinfu XU ; Kewu HUANG ; Qiang LI ; Xiangyan ZHANG ; Xiuhua FU ; Changzheng WANG ; Huahao SHEN ; Lei ZHU ; Guochao SHI ; Zhongmin QIU ; Zhongguang WEN ; Xiaoyang WEI ; Wei GU ; Chunhua WEI ; Guangfa WANG ; Ping CHEN ; Lixin XIE ; Jiangtao LIN ; Yuling TANG ; Zhihai HAN ; Kian Fan CHUNG ; Qingling ZHANG ; Nanshan ZHONG
Chinese Medical Journal 2023;136(2):230-232
5.Research progress of Shegan Mahuang Decoction and predictive analysis on its Q-markers.
Qiu-Hui LI ; Xiao-Xiao SHAN ; Wei-Dong YE ; Xun-Yan YIN ; Ya-Mei YUAN ; Xiang-Ming FANG
China Journal of Chinese Materia Medica 2023;48(8):2068-2076
Shegan Mahuang Decoction has been used in clinical practice for thousands of years, and is a classical formula for treating asthma and other respiratory diseases, with the effects of ventilating lung, dispersing cold, and relieving cough and asthma. This paper summarized the history, clinical application and mechanism of Shegan Mahuang Decoction, and predicted its quality markers(Q-markers) based on the "five principles" of Q-markers. The results suggested that irisflorentin, tectoridin, tectorigenin, irigenin, ephedrine, pseudoephedrine, asarinin, methyleugenol, shionone, epifriedelanol, tussilagone, 6-gingerol, trigonelline, cavidine, schizandrin, and schizandrin B could be used as Q-markers of Shegan Mahuang Decoction, which provided a basis for the quality control and subsequent research and development of Shegan Mahuang Decoction.
Humans
;
Ephedra sinica
;
Drugs, Chinese Herbal/pharmacology*
;
Asthma/drug therapy*
;
Lung
;
Cough/drug therapy*
6.Connotation of Xiao Chaihu Decoction combined with Maxing Shigan Decoction based on severe cases and modern pathophysiological mechanism and application for severe pulmonary infection and acute exacerbation of chronic obstructive pulmonary disease in critical care medicine.
China Journal of Chinese Materia Medica 2023;48(10):2606-2612
Xiao Chaihu Decoction combined with Maxing Shigan Decoction is a classic herbal formula. All of them are derived from Treatise on Cold Damage(Shang Han Lun) by ZHANG Zhong-jing. This combination has the effects of harmonizing lesser yang, relieving exterior syndrome, clearing lung heat, and relieving panting. It is mainly used for treating the disease involving the triple-Yang combination of diseases and accumulation of pathogenic heat in the lung. Xiao Chaihu Decoction combined with Maxing Shigan Decoction is a classic combination for the treatment of exogenous diseases involving the triple-Yang combination. They are commonly used in exogenous diseases, especially in the north of China. This combination is also the main treatment strategy for coronavirus disease 2019(COVID-19) accompanied by fever and cough. Maxing Shigan Decoction is a classical herbal formula for treating the syndrome of phlegm-heat obstructing the lung. "Dyspnea after sweating" suggests the accumulation of pathogenic heat in the lung. Patients with mild symptoms may develop cough and asthma along with forehead sweating, and those in critical severe may develop whole-body sweating, especially the front chest. Modern medicine believes that the above situation is related to lung infection. "Mild fever" refers to syndromes rather than pathogenesis. It does not mean that the heat syndrome is not heavy, instead, it suggests that severe heat and inflammation have occurred. The indications of Xiao Chaihu Decoction combined with Maxing Shigan Decoction are as follows.(1) In terms of diseases, it is suitable for the treatment of viral pneumonia, bronchopneumonia, lobar pneumonia, mycoplasma pneumonia, COVID-19 infection, measles with pneumonia, severe acute respiratory syndrome(SARS), avian influenza, H1N1 influenza, chronic obstructive pulmonary disease with acute exacerbation, pertussis, and other influenza and pneumonia.(2) In terms of syndromes, it can be used for the syndromes of bitter mouth, dry pharynx, vertigo, loss of appetite, vexation, vomiting, and fullness and discomfort in the chest and hypochondrium. It can also be used to treat alternate attacks of chill and fever and different degrees of fever, as well as chest tightness, cough, asthma, expectoration, dry mouth, wanting cold drinks, feeling agitated, sweating, yellow urine, dry stool, red tongue, yellow or white fur, and floating, smooth, and powerful pulse, especially the right wrist pulse.
Animals
;
Humans
;
Cough
;
Syndrome
;
Influenza A Virus, H1N1 Subtype
;
Influenza, Human
;
COVID-19
;
Drugs, Chinese Herbal/pharmacology*
;
Lung
;
Pulmonary Disease, Chronic Obstructive/drug therapy*
;
Asthma
;
Critical Care
;
Medicine, Chinese Traditional
7.Delineating asthma according to inflammation phenotypes with a focus on paucigranulocytic asthma.
Yinhe FENG ; Xiaoyin LIU ; Yubin WANG ; Rao DU ; Hui MAO
Chinese Medical Journal 2023;136(13):1513-1522
Asthma is characterized by chronic airway inflammation and airway hyper-responsiveness. However, the differences in pathophysiology and phenotypic symptomology make a diagnosis of "asthma" too broad hindering individualized treatment. Four asthmatic inflammatory phenotypes have been identified based on inflammatory cell profiles in sputum: eosinophilic, neutrophilic, paucigranulocytic, and mixed-granulocytic. Paucigranulocytic asthma may be one of the most common phenotypes in stable asthmatic patients, yet it remains much less studied than the other inflammatory phenotypes. Understanding of paucigranulocytic asthma in terms of phenotypic discrimination, distribution, stability, surrogate biomarkers, underlying pathophysiology, clinical characteristics, and current therapies is fragmented, which impedes clinical management of patients. This review brings together existing knowledge and ongoing research about asthma phenotypes, with a focus on paucigranulocytic asthma, in order to present a comprehensive picture that may clarify specific inflammatory phenotypes and thus improve clinical diagnoses and disease management.
Humans
;
Asthma/drug therapy*
;
Inflammation/diagnosis*
;
Respiratory System
;
Phenotype
;
Biomarkers
;
Sputum
;
Eosinophils
;
Neutrophils
9.Active components of Descurainia sophia improve lung permeability in rats with allergic asthma by regulating airway inflammation and epithelial damage.
Pan-Ying LI ; Pei-Pei YUAN ; Ying HOU ; Li-Yuan GAO ; Ya-Xin WEI ; Yuan RUAN ; Yi CHEN ; Yang FU ; Xiao-Ke ZHENG ; Wei-Sheng FENG
China Journal of Chinese Materia Medica 2022;47(4):1009-1016
The present study investigated the effect of active components of Descurainia sophia on allergic asthma and explored the underlying mechanism. SD male rats were randomly divided into a normal group(NC), a model group(M), a D. sophia decoction group(DS), a D. sophia fatty oil group(FO), a D. sophia flavonoid glycoside group(FG), a D. sophia oligosaccharide group(Oli), and a positive drug dexamethasone group(Y). The allergic asthma model was induced in rats by intraperitoneal injection of ovalbumin(OVA) and aluminum hydroxide gel adjuvant(sensitization) and atomization of OVA solution(excitation). After modeling, asthma-related indicators, tracheal phenol red excretion, inflammatory cell levels in the peripheral blood, lung permeability index(LPI), and oxygenation index(OI) of rats were detected. The pathological changes of lung tissues were observed by HE staining. Enzyme-linked immunosorbent assay(ELISA) was used to detect the content of inflammatory factors immunoglobulin E(IgE), interleukin-4(IL-4), and interferon-γ(IFN-γ) in the bronchoalveolar lavage fluid(BALF) and the content of endothelin-1(ET-1) and angiotensin-converting enzyme(ACE) in lung tissue homogenate. The serum content of nitric oxide(NO) was detected by colorimetry. Western blot was employed to determine the protein expression of Toll-like receptor 4(TLR4), nuclear factor κB-p65(NF-κB-p65), phosphorylated NF-κB-p65(p-NF-κB-p65), myosin light chain kinase(MLCK), vascular endothelial cadherin(VE cadherin), connexin 43, and claudin 5, and the mechanism of active components of D. sophia on allergic asthma was explored. As revealed by the results, the M group showed extensive infiltration of inflammatory cells around the bronchus of the lung tissues of the allergic asthma rats, thickened bronchial wall, severely deformed alveolar structure, increased number of wheezes, the content of IgE, IL-4, ET-1, and ACE, inflammatory cells, and LPI, and reduced latency of asthma, tracheal phenol red excretion, IFN-γ, NO content, and OI. After the intervention of the active components of D. sophia, the DS, FO, FG, Oli, and Y groups showed improved asthma-related indicators, tracheal phenol red excretion, and lung tissue lesions in allergic asthma rats, and the effects in the FO and Oli groups were superior. The content of inflammatory factors in BALF was recovered in the DS, FO, and Y groups and the FG and Oli groups. The number of inflammatory cells in rats was reduced in the DS and FO groups, and the FG, Oli, and Y groups to varying degrees, and the effect in the FO group was superior. DS, FO, Oli, and Y reduced ET-1, ACE, and LPI and increased NO and OI. FG recovered NO, ET-1, ACE, LPI, and OI to improve lung epithelial damage and permeability. Further investigation of inflammation-related TLR4/NF-κB pathways, MLCK, and related skeleton protein levels showed that TLR4, NF-κB-p65, p-NF-κB-p65, and MLCK levels were increased, and VE cadherin, connexin 43, and claudin 5 were reduced in the M group. DS, FO, FG, Oli, and Y could reduce the protein expression related to the TLR4 pathway to varying degrees, and regulate the protein expression of MLCK, VE cadherin, connexin 43, and claudin 5. It is inferred that the active components of D. sophia improve lung permeability in rats with allergic asthma presumedly by regulating the TLR4/NF-κB signaling pathway to improve airway inflammation, mediating MLCK and connexin, and regulating epithelial damage.
Animals
;
Asthma/drug therapy*
;
Bronchoalveolar Lavage Fluid
;
Inflammation/metabolism*
;
Lung
;
Male
;
Permeability
;
Rats
10.Components of drugs in acupoint sticking therapy and its mechanism of intervention on bronchial asthma based on UPLC-Q-TOF-MS combined with network pharmacology and experimental verification.
Jun HU ; Ling WENG ; Cong ZHANG ; Shu-Mei ZHAO ; Kai-Wen GE ; Kuan DI ; Meng CAO ; He-Sheng WANG ; Lin-Gang ZHAO ; Lan-Ying LIU
China Journal of Chinese Materia Medica 2022;47(5):1359-1369
UPLC-Q-TOF-MS combined with network pharmacology and experimental verification was used to explore the mechanism of acupoint sticking therapy(AST) in the intervention of bronchial asthma(BA). The chemical components of Sinapis Semen, Cory-dalis Rhizoma, Kansui Radix, Asari Radix et Rhizoma, and Zingiberis Rhizoma Recens were retrieved from TCMSP as self-built database. The active components in AST drugs were analyzed by UPLC-Q-TOF-MS, and the targets were screened out in TCMSP and Swiss-TargetPrediction. Targets of BA were collected from GeneCards, and the intersection of active components and targets was obtained by Venny 2.1.0. The potential targets were imported into STRING and DAVID for PPI, GO, and KEGG analyses. The asthma model induced by house dust mite(HDM) was established in mice. The mechanism of AST on asthmatic mice was explored by pulmonary function, Western blot, and flow cytometry. The results indicated that 54 active components were obtained by UPLC-Q-TOF-MS and 162 potential targets were obtained from the intersection. The first 53 targets were selected as key targets. PPI, GO, and KEGG analyses showed that AST presumedly acted on SRC, PIK3 CA, and other targets through active components such as sinoacutine, sinapic acid, dihydrocapsaicin, and 6-gingerol and regulated PI3 K-AKT, ErbB, chemokine, sphingolipid, and other signaling pathways to intervene in the pathological mechanism of BA. AST can improve lung function, down-regulate the expression of PI3 K and p-AKT proteins in lung tissues, enhance the expression of PETN protein, and reduce the level of type Ⅱ innate immune cells(ILC2 s) in lung tissues of asthmatic mice. In conclusion, AST may inhibit ILC2 s by down-regulating the PI3 K-AKT pathway to relieve asthmatic airway inflammation and reduce airway hyperresponsiveness.
Acupuncture Points
;
Animals
;
Asthma/drug therapy*
;
Drugs, Chinese Herbal
;
Immunity, Innate
;
Lymphocytes
;
Mice
;
Network Pharmacology

Result Analysis
Print
Save
E-mail