1.Astragalus membranaceus improves therapeutic efficacy of asthmatic children by regulating the balance of Treg/Th17 cells.
Wei WANG ; Qing-Bin LIU ; Wei JING
Chinese Journal of Natural Medicines (English Ed.) 2019;17(4):252-263
Astragalus membranaceus may be a potential therapy for childhood asthma but its driving mechanism remains elusive. The main components of A. membranaceus were identified by HPLC. The children with asthma remission were divided into two combination group (control group, the combination of budesonide and terbutaline) and A. membranaceus group (treatment group, the combination of budesonide, terbutaline and A. membranaceus). The therapeutic results were compared between two groups after 3-month therapy. Porcine peripheral blood mononuclear cells (PBMCs) were isolated from venous blood by using density gradient centrifugation on percoll. The levels of FoxP3, EGF-β, IL-17 and IL-23 from PBMCs and serum IgE were measured. The relative percentage of Treg/Th17 cells was determined using flow cytometry. The main components of A. membranaceus were calycosin-7-O-glucoside, isoquercitrin, ononin, calycosin, quercetin, genistein, kaempferol, isorhamnetin and formononetin, all of which may contribute to asthma therapy. Lung function was significantly improved in the treatment group when compared with a control group (P < 0.05). The efficacy in preventing the occurrence of childhood asthma was higher in the treatment group than the control group (P < 0.05). The levels of IgE, IL-17 and IL-23 were reduced significantly in the treatment group when compared with the control group, while the levels of FoxP3 and TGF-β were increased in the treatment group when compared with the control group (P < 0.05). A. membranaceus increased the percentage of Treg cells and reduced the percentage of Th17 cells. A. membranaceus is potential natural product for improving the therapeutic efficacy of combination therapy of budesonide and terbutaline for the children with asthma remission by modulating the balance of Treg/Th17 cells.
Animals
;
Asthma
;
drug therapy
;
immunology
;
Astragalus propinquus
;
chemistry
;
Budesonide
;
administration & dosage
;
Cells, Cultured
;
Child
;
Child, Preschool
;
Cytokines
;
metabolism
;
Drugs, Chinese Herbal
;
administration & dosage
;
pharmacology
;
Female
;
Humans
;
Immunologic Factors
;
administration & dosage
;
pharmacology
;
Leukocytes, Mononuclear
;
drug effects
;
metabolism
;
Lung
;
drug effects
;
physiology
;
Male
;
Swine
;
T-Lymphocytes, Regulatory
;
cytology
;
drug effects
;
Terbutaline
;
administration & dosage
;
Th17 Cells
;
cytology
;
drug effects
;
Treatment Outcome
2.Effect of dexamethasone on osteopontin expression in the lung tissue of asthmatic mice.
Hai-Hui SUN ; Yun-Xiao SHANG ; Nan YANG
Chinese Journal of Contemporary Pediatrics 2014;16(12):1265-1270
OBJECTIVETo study the correlation between airway inflammation and osteopontin (OPN) level in the lung tissue, and to study the effect of dexamethasone (DXM) on OPN expression.
METHODSFifty mice were randomly divided into 5 groups: normal control, ovalbumin (OVA)-challenged asthma groups (OVA inhalation for 1 week or 2 weeks) and DXM-treated asthma groups (DXM treatment for 1 week or 2 weeks). The mice were sensitized and challenged with OVA to prepare mouse model of acute asthma. Alterations of airway inflammation were observed by haematoxylin-eosin staining. Serum level of OVA-sIgE was evaluated using ELISA. OPN expression in the lung tissue was located and measured by immunohistochemistry and Western blot respectively. OPN mRNA level in the lung tissue was detected by real-time PCR.
RESULTSThe asthma groups showed more pathological changes in the airway than the normal control and the DXM-treated groups. Compared with the OVA-challenged 1 week group, the pathological alterations increased in the OVA-challenged 2 weeks group. The level of OVA-sIgE in serum increased in the asthma groups compared with the control and the DXM groups (P<0.01). Serum OVA-sIgE sevel increased more significantly in the OVA-challenged 2 weeks group compared with the OVA-challenged 1 week group (P<0.01). OPN protein and mRNA levels were significantly raised in the asthma groups compared with the normal control and the DXM groups (P<0.01), and both levels increased more significantly in the OVA-challenged 2 weeks group compared with the OVA-challenged 1 week group (P<0.01).
CONCLUSIONSThe increased OPN expression in the lung tissue is associated with more severe airway inflammation in asthmatic mice, suggesting that OPN may play an important role in the pathogenesis of asthma. DXM can alleviate airway inflammation possibly by inhibiting OPN production.
Animals ; Asthma ; drug therapy ; metabolism ; pathology ; Dexamethasone ; therapeutic use ; Enzyme-Linked Immunosorbent Assay ; Female ; Immunoglobulin E ; blood ; Lung ; metabolism ; pathology ; Mice ; Mice, Inbred BALB C ; Osteopontin ; analysis ; genetics ; physiology ; Ovalbumin ; immunology
3.Effects of suplatast tosilate on airway inflammation and interleukin-5 in asthmatic rats.
Dan LIU ; Yun LI ; Li-Li ZHONG ; Yu-Pin TAN
Chinese Journal of Contemporary Pediatrics 2014;16(7):759-763
OBJECTIVETo study the effects of suplatast tosilate (IPD) on the airway inflammation and expression of interleukin-5 in asthmatic rats.
METHODSFifty adult male Sprague-Dawley rats (4-week- old) were randomly assigned to five groups: placebo control, untreated asthma, budesonide(BUD)-treated asthma , early or late IPD intervention group (n=10 rats each). Asthmatic mode was prepared by ovalbumin sensitizion and challenge. Inflammatory cells and the percentage of EOS were detected in bronchoalveolar lavage fluid (BALF). The lung tissues were removed to detect the lung histomorphology. Gene expression of IL-5 was measured by reverse transcription-polymerase chain reaction (RT-PCR). Levels of interleukin 5 (IL-5) in BALF were measured using ELISA.
RESULTSThe inflammatory cells and the percentage of EOS in BALF, IL-5 levels in BALF and IL-5 mRNA expression in the lung tissues were obviously higher in the untreated asthma group than the control group (P<0.05), while the parameters in the IPD or BUD-treated asthma groups were significantly lower than the untreated asthma group (P<0.05).
CONCLUSIONSIPD treatment can alleviate airway inflammation in asthmatic rats, possibly through inhibiting IL-5 mRNA transcripts.
Animals ; Arylsulfonates ; therapeutic use ; Asthma ; drug therapy ; immunology ; pathology ; Eosinophils ; drug effects ; Interleukin-5 ; analysis ; antagonists & inhibitors ; genetics ; Lung ; metabolism ; pathology ; Male ; Rats ; Rats, Sprague-Dawley ; Sulfonium Compounds ; therapeutic use
4.Difference in effect between asthma-based mouse model and Stemona tuberosa extracts.
Xiao-Xi CHEN ; Xiao-Dan ZHANG ; Hong-Yan LI ; Tian-Zhu JIA ; Jing-Xian YANG
China Journal of Chinese Materia Medica 2013;38(23):4084-4087
In this study, OVA-induced asthma mice was taken as the model, and orally administered with different concentration of ethanol extracts of crude and processed Stemona tuberosa, in order to determine the cytokine level released from Th1 and Th2 in splenocytes. RT-PCR was carried out to determine the genetic expression of T-bet/GATA-3 in lung, and compare the differentiation between ethanol extracts of crude and processed S. tuberosa in therapeutic effect on asthma in mice. According to the results, compared with the crude samples, processed samples significantly increased the levels of inflammatory factor INF-gamma (P < 0.05) and decreased IL-5 (P < 0.05) in splenocytes. According to the RT-PCR results, the administration of processed samples could increase the ratio of T-bet/GATA-3 (P < 0.05). The experiment showed that ethanol extracts of both crude and processed S. tuberosa could treat asthma by regulating Th1/Th2 ratio, but processed samples showed more notable effect. This indicated that crude and processed S. tuberosa had significant pharmacological difference. Therefore, it was more rational to apply processed S. tuberosa in clinical treatment of asthma and chronic cough, which layed a foundation for further revealing the processing mechanism of S. tuberosa.
Administration, Oral
;
Animals
;
Asthma
;
drug therapy
;
immunology
;
metabolism
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
administration & dosage
;
pharmacology
;
therapeutic use
;
GATA3 Transcription Factor
;
metabolism
;
Gene Expression Regulation
;
drug effects
;
Mice
;
Mice, Inbred BALB C
;
Stemonaceae
;
chemistry
;
T-Box Domain Proteins
;
metabolism
;
Th1 Cells
;
drug effects
;
secretion
;
Th2 Cells
;
drug effects
;
secretion
5.Constituents of the anti-asthma herbal formula ASHMI(TM) synergistically inhibit IL-4 and IL-5 secretion by murine Th2 memory cells, and eotaxin by human lung fibroblasts in vitro.
Bolleddula JAYAPRAKASAM ; Nan YANG ; Ming-Chun WEN ; Rong WANG ; Joseph GOLDFARB ; Hugh SAMPSON ; Xiu-Min LI
Journal of Integrative Medicine 2013;11(3):195-205
OBJECTIVEAnti-asthma herbal medicine intervention (ASHMI(TM)), a combination of three traditional Chinese medicinal herbs developed in our laboratory, has demonstrated efficacy in both mouse models of allergic asthma, and a double-blind placebo-controlled clinical trial in patients with asthma. This study was designed to determine if the anti-inflammatory effects of individual herbal constituents of ASHMI(TM) exhibited synergy.
METHODSEffects of ASHMI and its components aqueous extracts of Lingzhi (Ganoderma lucidum), Kushen (Sophora flavescens) and Gancao (Glycyrrhiza uralensis), on Th2 cytokine secretion by murine memory Th2 cells (D10.G4.1) and eotaxin-1 secretion by human lung fibroblast (HLF-1) cells were determined by measuring levels in culture supernatants by enzyme-linked immunosorbent assay. Potential synergistic effects were determined by computing interaction indices from concentration-effect curve parameters.
RESULTSIndividual Lingzhi, Kushen and Gancao extracts and ASHMI (the combination of individual extracts) inhibited production of interleukin (IL)-4 and IL-5 by murine memory Th2 cells and eotaxin-1 production by HLF-1 cells. The mean 25%-inhibitory-concentration (IC25) values (mg/mL) for ASHMI, Lingzhi, Kushen and Gancao for IL-4 production were 30.9, 79.4, 123, and 64.6, respectively; for IL-5 production were 30.2, 263, 123.2 and 100, respectively; for eotaxin-1 were 13.2, 16.2, 30.2, and 25.1, respectively. The IC50 values (mg/mL) for ASHMI, Lingzhi, Kushen and Gancao for IL-4 production were 158.5, 239.9, 446.7, and 281.8, respectively; for eotaxin-1 were 38.1, 33.1, 100, and 158.5, respectively. The interaction indices of ASHMI constituents at IC25 were 0.35 for IL-4, 0.21 for IL-5 and 0.59 for eotaxin-1. The interaction indices at IC50 values were 0.50 for IL-4 and 0.62 for eotaxin-1 inhibition. Inhibition of IL-5 did not reach IC50 values. All interaction indices were below 1 which indicated synergy.
CONCLUSIONBy comparing the interaction index values, we find that constituents in ASHMI(TM) synergistically inhibited eotaxin-1 production as well as Th2 cytokine production.
Animals ; Asthma ; drug therapy ; metabolism ; Cell Line ; Chemokine CCL11 ; metabolism ; Down-Regulation ; drug effects ; Drug Synergism ; Drugs, Chinese Herbal ; analysis ; pharmacology ; Fibroblasts ; drug effects ; metabolism ; Humans ; Interleukin-4 ; metabolism ; Interleukin-5 ; genetics ; immunology ; Mice ; Plants, Medicinal ; chemistry ; Th2 Cells ; drug effects ; metabolism
6.Safety of Accelerated Schedules of Subcutaneous Allergen Immunotherapy with House Dust Mite Extract in Patients with Atopic Dermatitis.
Myoung Eun KIM ; Jeong Eun KIM ; Joon Mo SUNG ; Jin Woo LEE ; Gil Soon CHOI ; Dong Ho NAHM
Journal of Korean Medical Science 2011;26(9):1159-1164
The safety of accelerated schedules of allergen immunotherapy (ASAI) in patients with bronchial asthma (BA) has been reported but there are little data on the safety of ASAI for patients with atopic dermatitis (AD). In this study, we investigated the safety of ASAI in patients with AD. Sixty patients with AD and 18 patients with BA sensitized to house dust mites (HDM) were studied. A maximum maintenance dose of HDM extract, adsorbed to aluminum hydroxide, was administered to patients by subcutaneous injection with either a 3-day protocol (rush immunotherapy) or 1-day protocol (ultra-rush immunotherapy). Systemic reactions were observed 4 of 15 patients (26.7%) with AD during rush immunotherapy, 13 of 45 patients (28.9%) with AD during ultra-rush immunotherapy, and 4 of 18 patients (22.2%) with BA during rush immunotherapy (P > 0.05). No severe or near fatal systemic reactions occurred in 78 subjects of this study. Systemic reactions developed within 4 hr after administration of the maximum allergen dose in 20 of 21 patients (95.2%) with AD and BA who showed systemic reactions during rush or ultra-rush immunotherapy. In conclusion, ASAI was safe and well tolerated in patients with AD. ASAI can be a useful therapeutic option for AD.
Adolescent
;
Adult
;
Allergens/*therapeutic use
;
Aluminum Hydroxide/chemistry
;
Animals
;
Asthma/therapy
;
Dermatitis, Atopic/immunology/*therapy
;
Desensitization, Immunologic/*methods
;
Drug Administration Schedule
;
Female
;
Humans
;
Infusions, Subcutaneous
;
Male
;
Pyroglyphidae/*immunology/metabolism
7.Protective effects and mechanism of Inonotus obliquus on asthmatic mice.
Guanghai YAN ; Guangyu JIN ; Liangchang LI ; Xiangzheng QIN ; Changji ZHENG ; Guangzhao LI
China Journal of Chinese Materia Medica 2011;36(8):1067-1070
OBJECTIVETo explore the protective effects and mechanism of ethanol extract of Inonotus obliquus (EEIO) injection on asthmatic mice.
METHODOVA was injected intraperitoneally and inhaled to produce the asthmatic model. Thirty two mice were randomly divided into four groups: control group, asthma group and I. obliquus groups of high and low dose. The concentrations of IL-4, IL-5, IL-13 and IFN-gamma in BALF, the phosphor-p38 MAPK in lung tissues were respectively measured by ELISA and Western blotting. The number of inflammatory cells in BALF and histopathology changes were observed.
RESULTIn asthmatic group, the number of inflammatory cells and the concentrations of IL-4, IL-5, IL-13 in BALF and phospho-p38 MAPK in lung tissue were higher, while IFN-gamma were lower than those in normal control mice (P < 0.05). In I. obliquus group, the number of inflammatory cells, the concentrations of IL-4, IL-5, IL-13 in BALF and phosphor-p38 MAPK in lung tissue were lower, but were higher than those in normal control mice (P < 0.05), and histropathology damage was alleviated significantly. There was no significant difference observed among the efficacies in the I. obliquus groups of high and low dose.
CONCLUSIONp38 MAPK may play a role in pathological process of asthma. I. obliquus effectively treats asthma by inhibiting the expression of phosphor-p38 MAPK, correcting the unbalance of IFN-gamma/IL-4 and decreasing the number of inflammatory cells.
Animals ; Anti-Asthmatic Agents ; isolation & purification ; pharmacology ; Asthma ; drug therapy ; metabolism ; pathology ; Basidiomycota ; chemistry ; Basophils ; drug effects ; metabolism ; Bronchoalveolar Lavage Fluid ; cytology ; immunology ; Disease Models, Animal ; Interferon-gamma ; drug effects ; metabolism ; Interleukin-13 ; metabolism ; Interleukin-4 ; metabolism ; Interleukin-5 ; metabolism ; Lung ; pathology ; Lymphocytes ; drug effects ; metabolism ; Mice ; Mice, Inbred BALB C ; Neutrophils ; drug effects ; metabolism ; Phytotherapy ; Plant Extracts ; pharmacology ; p38 Mitogen-Activated Protein Kinases ; drug effects ; metabolism
8.Molecular mechanism of icariin on rat asthmatic model.
Chang-Qing XU ; Jing-Jing LE ; Xiao-Hong DUAN ; Wei-Jing DU ; Bao-Jun LIU ; Jing-Feng WU ; Yu-Xue CAO ; Jing-Cheng DONG
Chinese Medical Journal 2011;124(18):2899-2906
BACKGROUNDEffects of icariin on airway inflammation in asthmatic rats and the intervention of LPS induced inflammation are interfered with the machanism of icariin. Our study aimed to observe the effect of icariin on ovalbumin-induced imbalance of Th1/Th2 cytokine expression and its mechanism.
METHODSSixty male SD rats were randomly divided into control group (PBS), asthma group (ovalbumin (OVA)-induced), dexamethasone group, and OVA+icariin low, medium and high dose groups (5, 10, 20 mg/kg, respectively). Each group had ten rats. The model of OVA sensitization was a rat asthma model. Enzyme-linked immunosorbent assay (ELISA) method was used to observe the effects of icariin on interleukin-4 (IL-4) and inerferon γ (IFN-γ) in rats' lung tissue. Immunohistochemical staining was applied to detect the intervention effects of icariin on T cells (T-bet) and gatabinding protein 3 (GATA-3) in rat pulmonary tissue. Realtime RT-PCR was used to observe the intervention effects of icariin on T-bet and GATA-3 mRNA expression in rat pulmonary tissue and spleen lymphocytes. Western blotting was used to observe the icariin intervention effects on T-bet, GATA-3 and nuclear factor-Kappa B (NF-κB) p65 protein expressions in rat pulmonary tissue.
RESULTSThe ELISA results from pulmonary tissue showed that IL-4 expression was significantly reduced (P < 0.05), while the IFN-γ expression increased but not significantly when we compared OVA+icariin medium and high dose groups with the asthma group. Immunohistochemical staining of pulmonary tissue showed that the GATA-3 decreased significantly while the T-bet staining did not change in the OVA+icariin high dose group. In pulmonary tissue and spleen lymphocytes T-bet and GATA-3 mRNA expressions were significantly reduced (P < 0.05) in icariin treatment groups compared with the asthma model group. GATA-3 and T-bet mRNA in rat spleen lymphocytes in the asthma group were higher than in the control group. GATA-3 mRNA expression in pulmonary tissue significantly decreased (P < 0.05) while T-bet mRNA expression decreased but not significantly in the icariin treatment group compared with the asthma group. T-bet and GATA-3 protein expressions in pulmonary tissue increased significantly compared with the asthma group, which meant that icariin could inhibit the increase of GATA-3 protein, but not of T-bet. The bronchus, blood vessels and periphery pulmonary tissue had infiltration of inflammatory cells in the OVA+icariin high dose group while NF-κB p65 cells were reduced, and expression of NF-κB p65 in this group was less than in the asthma group. The expression of total p65 protein decreased with icariin treatment while the expression of cytoplasmic p65 protein increased.
CONCLUSIONSIcariin could regulate the imbalance of Th1/Th2 cytokines in asthmatic rat pulmonary tissue. Icariin could regulate the imbalance of Th1/Th2 associated transcription factors T-bet and GATA-3 in asthmatic rat pulmonary tissue and spleen lymphocytes. Icariin could inhibit the activation of NF-κB p65 protein in asthmatic rat pulmonary tissue.
Animals ; Asthma ; drug therapy ; immunology ; metabolism ; Blotting, Western ; Disease Models, Animal ; Enzyme-Linked Immunosorbent Assay ; Flavonoids ; therapeutic use ; GATA3 Transcription Factor ; metabolism ; Immunohistochemistry ; Interferon-gamma ; metabolism ; Interleukin-4 ; metabolism ; Lung ; metabolism ; Male ; Ovalbumin ; metabolism ; Polymerase Chain Reaction ; Rats ; Rats, Sprague-Dawley ; T-Box Domain Proteins ; metabolism ; Th1 Cells ; drug effects ; metabolism ; Th2 Cells ; drug effects ; metabolism ; Transcription Factor RelA ; metabolism
9.Protective effects of basic fibroblast growth factor in the development of emphysema induced by interferon-gamma.
Byung Jae LEE ; Hyung Geun MOON ; Tae Seop SHIN ; Seong Gyu JEON ; Eun Young LEE ; Yong Song GHO ; Chun Geun LEE ; Zhou ZHU ; Jack A ELIAS ; Yoon Keun KIM
Experimental & Molecular Medicine 2011;43(4):169-178
Recent clinical evidence indicates that the non-eosinophilic subtype of severe asthma is characterized by fixed airway obstruction, which may be related to emphysema. Transgenic studies have demonstrated that high levels of IFN-gamma in the airways induce emphysema. Fibroblast growth factor 2 (FGF2), which is the downstream mediator of TGF-beta, is important in wound healing. We investigated the role of FGF2 in IFN-gamma-induced emphysema and the therapeutic effects of recombinant FGF2 in the prevention of emphysema in a severe non-eosinophilic asthma model. To evaluate the role of FGF2 in IFN-gamma-induced emphysema, lung targeted IFN-gamma transgenic mice were cross-bred with FGF2-deficient mice. A severe non-eosinophilic asthma model was generated by airway application of LPS-containing allergens twice a week for 4 weeks. To evaluate protective effects of FGF2, recombinant FGF2 (10 microg) was injected subcutaneously during allergen challenge in the severe asthma model. We found that non-eosinophilic inflammation and emphysema induced by transgenic overexpression of IFN-gamma in the airways were aggravated by the absence of FGF2. Airway challenge with LPS-containing allergens induced more inflammation in mice sensitized with LPS-containing allergens compared to challenge with allergens alone. In addition, LPS-induced lung inflammation and emphysema depended on IFN-gamma but not on IL-13. Interestingly, emphysema in the severe asthma model was significantly inhibited by treatment with recombinant FGF2 during allergen challenge, whereas lung inflammation was unaffected. Therefore, our present data suggest that FGF2 may help protect against IFN-gamma-induced emphysema, and that recombinant FGF2 may help lessen the severity of emphysema.
Animals
;
Asthma/drug therapy/*prevention & control
;
Bronchoalveolar Lavage Fluid
;
Disease Models, Animal
;
Emphysema/drug therapy/*prevention & control
;
Enzyme-Linked Immunosorbent Assay
;
Fibroblast Growth Factor 2/deficiency/*metabolism/*therapeutic use
;
Flow Cytometry
;
Inflammation/immunology
;
Interferon-gamma/*biosynthesis/genetics
;
Interleukin-13
;
Lipopolysaccharides/administration & dosage/pharmacology
;
Mice
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Pulmonary Eosinophilia
;
Recombinant Proteins/administration & dosage/therapeutic use
10.Expression of Galectin-9 and Tim-3 in lungs of mice with asthma.
Zhi-Ying ZHANG ; Bin LUAN ; Xiao-Xia FENG
Chinese Journal of Contemporary Pediatrics 2011;13(5):406-410
OBJECTIVETo study the expression of Galectin-9 and Tim-3 in lungs of mice with asthma and the effect of rosiglitazone (PPAR-γ agonist) on their expression.
METHODSFortyfive BALB/c SPF female mice were randomized into control group and asthma groups with and without rosiglitazone intervention. After ovalbumin stimulation and rosiglitazone intervention the pathological changes of the lung tissues were observed. Galectin-9 and Tim-3 mRNA levels in lung tissues were determined using RT-PCR. The levels of IL-4 and IFN-γ in peripheral blood were measured using ELISA.
RESULTSThe expression of Galectin-9 and Tim-3 mRNA of lung tissues in the untreated asthma group increased significantly compared with the control and the rosiglitazone treated groups (P<0.05). A significantly increased blood expression of IL-4 and a significantly decreased blood expression of IFN-γ were found in the untreated asthma group compared with the control and the rosiglitazone-treated groups (P<0.05). The expression of Galectin-9 and Tim-3 mRNA was positively correlated with blood IL-4 level (r=0.792, r=0.794 respectively; P<0.05), but negatively correlated with blood IFN-γ level (r=-0.692, r=-0.757 respectively; P<0.05).
CONCLUSIONSGalectin-9 and Tim-3 mRNA levels in lungs increase in mice with asthma and significantly correlate with the levels of blood Th1/Th2 cytokines. This suggests that Galectin-9 and Tim-3 are closely related to inflammatory process in asthma. Rosiglitazone treatment may decrease the expression of Galectin-9 and Tim-3.
Animals ; Asthma ; drug therapy ; immunology ; pathology ; Female ; Galectins ; genetics ; Hepatitis A Virus Cellular Receptor 2 ; Interferon-gamma ; blood ; Interleukin-4 ; blood ; Lung ; metabolism ; pathology ; Mice ; Mice, Inbred BALB C ; PPAR gamma ; physiology ; RNA, Messenger ; analysis ; Receptors, Virus ; genetics ; Reverse Transcriptase Polymerase Chain Reaction ; Th1 Cells ; immunology ; Th2 Cells ; immunology ; Thiazolidinediones ; therapeutic use

Result Analysis
Print
Save
E-mail