1.Active components of Descurainia sophia improve lung permeability in rats with allergic asthma by regulating airway inflammation and epithelial damage.
Pan-Ying LI ; Pei-Pei YUAN ; Ying HOU ; Li-Yuan GAO ; Ya-Xin WEI ; Yuan RUAN ; Yi CHEN ; Yang FU ; Xiao-Ke ZHENG ; Wei-Sheng FENG
China Journal of Chinese Materia Medica 2022;47(4):1009-1016
The present study investigated the effect of active components of Descurainia sophia on allergic asthma and explored the underlying mechanism. SD male rats were randomly divided into a normal group(NC), a model group(M), a D. sophia decoction group(DS), a D. sophia fatty oil group(FO), a D. sophia flavonoid glycoside group(FG), a D. sophia oligosaccharide group(Oli), and a positive drug dexamethasone group(Y). The allergic asthma model was induced in rats by intraperitoneal injection of ovalbumin(OVA) and aluminum hydroxide gel adjuvant(sensitization) and atomization of OVA solution(excitation). After modeling, asthma-related indicators, tracheal phenol red excretion, inflammatory cell levels in the peripheral blood, lung permeability index(LPI), and oxygenation index(OI) of rats were detected. The pathological changes of lung tissues were observed by HE staining. Enzyme-linked immunosorbent assay(ELISA) was used to detect the content of inflammatory factors immunoglobulin E(IgE), interleukin-4(IL-4), and interferon-γ(IFN-γ) in the bronchoalveolar lavage fluid(BALF) and the content of endothelin-1(ET-1) and angiotensin-converting enzyme(ACE) in lung tissue homogenate. The serum content of nitric oxide(NO) was detected by colorimetry. Western blot was employed to determine the protein expression of Toll-like receptor 4(TLR4), nuclear factor κB-p65(NF-κB-p65), phosphorylated NF-κB-p65(p-NF-κB-p65), myosin light chain kinase(MLCK), vascular endothelial cadherin(VE cadherin), connexin 43, and claudin 5, and the mechanism of active components of D. sophia on allergic asthma was explored. As revealed by the results, the M group showed extensive infiltration of inflammatory cells around the bronchus of the lung tissues of the allergic asthma rats, thickened bronchial wall, severely deformed alveolar structure, increased number of wheezes, the content of IgE, IL-4, ET-1, and ACE, inflammatory cells, and LPI, and reduced latency of asthma, tracheal phenol red excretion, IFN-γ, NO content, and OI. After the intervention of the active components of D. sophia, the DS, FO, FG, Oli, and Y groups showed improved asthma-related indicators, tracheal phenol red excretion, and lung tissue lesions in allergic asthma rats, and the effects in the FO and Oli groups were superior. The content of inflammatory factors in BALF was recovered in the DS, FO, and Y groups and the FG and Oli groups. The number of inflammatory cells in rats was reduced in the DS and FO groups, and the FG, Oli, and Y groups to varying degrees, and the effect in the FO group was superior. DS, FO, Oli, and Y reduced ET-1, ACE, and LPI and increased NO and OI. FG recovered NO, ET-1, ACE, LPI, and OI to improve lung epithelial damage and permeability. Further investigation of inflammation-related TLR4/NF-κB pathways, MLCK, and related skeleton protein levels showed that TLR4, NF-κB-p65, p-NF-κB-p65, and MLCK levels were increased, and VE cadherin, connexin 43, and claudin 5 were reduced in the M group. DS, FO, FG, Oli, and Y could reduce the protein expression related to the TLR4 pathway to varying degrees, and regulate the protein expression of MLCK, VE cadherin, connexin 43, and claudin 5. It is inferred that the active components of D. sophia improve lung permeability in rats with allergic asthma presumedly by regulating the TLR4/NF-κB signaling pathway to improve airway inflammation, mediating MLCK and connexin, and regulating epithelial damage.
Animals
;
Asthma/drug therapy*
;
Bronchoalveolar Lavage Fluid
;
Inflammation/metabolism*
;
Lung
;
Male
;
Permeability
;
Rats
2.Mechanism of "Ephedrae Herba-Descurainiae Semen Lepidii Semen" combination in treatment of bronchial asthma based on network pharmacology and experimental verification.
Bei-Bei ZHANG ; Meng-Nan ZENG ; Qin-Qin ZHANG ; Ru WANG ; Ju-Fang JIA ; Peng-Li GUO ; Meng LIU ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2022;47(18):4996-5007
This study aims to investigate mechanism of "Ephedrae Herba-Descurainiae Semen Lepidii Semen" combination(MT) in the treatment of bronchial asthma based on network pharmacology and in vivo experiment, which is expected to lay a theoretical basis for clinical application of the combination. First, the potential targets of MT in the treatment of bronchial asthma were predicted based on network pharmacology, and the "Chinese medicine-active component-target-pathway-disease" network was constructed, followed by Gene Oncology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment of the potential targets. Molecular docking was used to determine the binding activity of key candidate active components to hub genes. Ovalbumin(OVA, intraperitoneal injection for sensitization and nebulization for excitation) was used to induce bronchial asthma in rats. Rats were classified into control group(CON), model group(M), dexamethasone group(DEX, 0.075 mg·kg~(-1)), and MT(1∶1.5) group. Hematoxylin and eosin(HE), Masson, and periodic acid-Schiff(PAS) staining were performed to observe the effect of MT on pathological changes of lungs and trachea and goblet cell proliferation in asthma rats. The levels of transforming growth factor(TGF)-β1, interleukin(IL)6, and IL10 in rat serum were detected by enzyme-linked immunosorbent assay(ELISA), and the mRNA and protein levels of mitogen-activated protein kinase 8(MAPK8), cyclin D1(CCND1), IL6, epidermal growth factor receptor(EGFR), phosphatidylinositol 3-kinase(PI3 K), and protein kinase B(Akt) by qRT-PCR and Western blot. Network pharmacology predicted that MAPK8, CCND1, IL6, and EGFR were the potential targets of MT in the treatment of asthma, which may be related to PI3 K/Akt signaling pathway. Quercetin and β-sitosterol in MT acted on a lot of targets related to asthma, and molecular docking results showed that quercetin and β-sitosterol had strong binding activity to MAPK, PI3 K, and Akt. In vivo experiment showed that MT could effectively alleviate the symptoms of OVA-induced asthma rats, improve the pathological changes of lung tissue, reduce the production of goblet cells, inhibit the inflammatory response of asthma rats, suppress the expression of MAPK8, CCND1, IL6, and EGFR, and regulate the PI3 K/Akt signaling pathway. Therefore, MT may relieve the symptoms and inhibit inflammation of asthma rats by regulating the PI3 K/Akt signaling pathway, and quercetin and β-sitosterol are the candidate active components.
Animals
;
Asthma/drug therapy*
;
Cyclin D1
;
Dexamethasone/adverse effects*
;
Drug Combinations
;
Drugs, Chinese Herbal/therapeutic use*
;
Eosine Yellowish-(YS)/adverse effects*
;
Ephedra
;
ErbB Receptors
;
Hematoxylin/therapeutic use*
;
Interleukin-10
;
Interleukin-6
;
Mitogen-Activated Protein Kinase 8/therapeutic use*
;
Molecular Docking Simulation
;
Network Pharmacology
;
Ovalbumin/adverse effects*
;
Periodic Acid/adverse effects*
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Quercetin
;
RNA, Messenger
;
Rats
3.Astragalus membranaceus improves therapeutic efficacy of asthmatic children by regulating the balance of Treg/Th17 cells.
Wei WANG ; Qing-Bin LIU ; Wei JING
Chinese Journal of Natural Medicines (English Ed.) 2019;17(4):252-263
Astragalus membranaceus may be a potential therapy for childhood asthma but its driving mechanism remains elusive. The main components of A. membranaceus were identified by HPLC. The children with asthma remission were divided into two combination group (control group, the combination of budesonide and terbutaline) and A. membranaceus group (treatment group, the combination of budesonide, terbutaline and A. membranaceus). The therapeutic results were compared between two groups after 3-month therapy. Porcine peripheral blood mononuclear cells (PBMCs) were isolated from venous blood by using density gradient centrifugation on percoll. The levels of FoxP3, EGF-β, IL-17 and IL-23 from PBMCs and serum IgE were measured. The relative percentage of Treg/Th17 cells was determined using flow cytometry. The main components of A. membranaceus were calycosin-7-O-glucoside, isoquercitrin, ononin, calycosin, quercetin, genistein, kaempferol, isorhamnetin and formononetin, all of which may contribute to asthma therapy. Lung function was significantly improved in the treatment group when compared with a control group (P < 0.05). The efficacy in preventing the occurrence of childhood asthma was higher in the treatment group than the control group (P < 0.05). The levels of IgE, IL-17 and IL-23 were reduced significantly in the treatment group when compared with the control group, while the levels of FoxP3 and TGF-β were increased in the treatment group when compared with the control group (P < 0.05). A. membranaceus increased the percentage of Treg cells and reduced the percentage of Th17 cells. A. membranaceus is potential natural product for improving the therapeutic efficacy of combination therapy of budesonide and terbutaline for the children with asthma remission by modulating the balance of Treg/Th17 cells.
Animals
;
Asthma
;
drug therapy
;
immunology
;
Astragalus propinquus
;
chemistry
;
Budesonide
;
administration & dosage
;
Cells, Cultured
;
Child
;
Child, Preschool
;
Cytokines
;
metabolism
;
Drugs, Chinese Herbal
;
administration & dosage
;
pharmacology
;
Female
;
Humans
;
Immunologic Factors
;
administration & dosage
;
pharmacology
;
Leukocytes, Mononuclear
;
drug effects
;
metabolism
;
Lung
;
drug effects
;
physiology
;
Male
;
Swine
;
T-Lymphocytes, Regulatory
;
cytology
;
drug effects
;
Terbutaline
;
administration & dosage
;
Th17 Cells
;
cytology
;
drug effects
;
Treatment Outcome
4.Protective effects of methane-rich saline on mice with allergic asthma by inhibiting inflammatory response, oxidative stress and apoptosis.
Ning ZHANG ; Hong-Tao LU ; Rong-Jia ZHANG ; Xue-Jun SUN
Journal of Zhejiang University. Science. B 2019;20(10):828-837
BACKGROUND:
Asthma is a common cause of breathing difficulty in children and adults, and is characterized by chronic airway inflammation that is poorly controlled by available treatments. This results in severe disability and applies a huge burden to the public health system. Methane has been demonstrated to function as a therapeutic agent in many diseases. The aim of the present study was to explore the effect of methane-rich saline (MRS) on the pathophysiology of a mouse model of asthma and its underlying mechanism.
METHODS:
A murine model of ovalbumin (OVA)-induced allergic asthma was applied in this study. Mice were divided into three groups: a control group, an OVA group, and OVA-induced asthmatic mice treated with MRS as the third group. Lung resistance index (RI) and dynamic compliance (Cdyn) were measured to determine airway hyper-responsiveness (AHR). Haematoxylin and eosin (H&E) staining was performed and scored to show histopathological changes. Cell counts of bronchoalveolar lavage fluid (BALF) were recorded. Cytokines interleukin (IL)-4, IL-5, IL-13, tumor necrosis factor α (TNF-α), and C-X-C motif chemokine ligand 15 (CXCL15) from BALF and serum were measured by enzyme-linked immunosorbent assay (ELISA). The oxidative stress indexes, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), myeloperoxidase (MPO), and 8-hydroxydeoxyguanosine (8-OHdG), were determined using commercial kits. Apoptosis was evaluated by western blot, quantitative real-time polymerase chain reaction (qRT-PCR), and biochemical examination.
RESULTS:
MRS administration reversed the OVA-induced AHR, attenuated the pathological inflammatory infiltration, and decreased the cytokines IL-4, IL-5, IL-13, TNF-α, and CXCL15 in serum and BALF. Moreover, following MRS administration, the oxidative stress was alleviated as indicated by decreased MDA, MPO, and 8-OHdG, and elevated SOD and GSH. In addition, MRS exhibited an anti-apoptotic effect in this model, protecting epithelial cells from damage.
CONCLUSIONS
Methane improves pulmonary function and decreases infiltrative inflammatory cells in the allergic asthmatic mouse model. This may be associated with its anti-inflammatory, antioxidative, and anti-apoptotic properties.
Animals
;
Apoptosis/drug effects*
;
Asthma/metabolism*
;
Bronchial Hyperreactivity/drug therapy*
;
Cytokines/analysis*
;
Female
;
Inflammation/prevention & control*
;
Methane/pharmacology*
;
Mice
;
Mice, Inbred BALB C
;
Oxidative Stress/drug effects*
;
Saline Solution
5.Effects of Ligustrazine on Airway Inflammation in A Mouse Model of Neutrophilic Asthma.
Xiao-Ming LIU ; Yong-Bin WANG ; Qian WU ; Zhong-Rui BIAN ; Xiao-Wen CHE
Chinese journal of integrative medicine 2018;24(5):353-358
OBJECTIVETo investigate the effects of ligustrazine (LTZ) on airway inflammation in a mouse model of neutrophilic asthma (NA).
METHODSForty healthy C57BL/6 female mice were randomly divided into 4 groups using a random number table, including the normal control, NA, LTZ and dexamethasone (DXM) groups, with 10 rats in each group. The NA mice model was established by the method of ovalbumin combined with lipopolysaccharide sensitization. At 0.5 h before each challenge, LTZ and DXM groups were intraperitoneally injected with LTZ (80 mg/kg) or DXM (0.5 mg/kg) for 14 d, respectively, while the other two groups were given the equal volume of normal saline. After last challenge for 24 h, the aerosol inhalation of methacholine was performed and the airway reactivity was measured. The bronchoalveolar lavage fluid (BALF) was collected. The Wright-Giemsa staining was used for total white blood cells and differential counts. The levels of cytokines interleukin (IL)-17 and IL-10 were detected by enzyme-linked immunosorbent assay. The pathological change of lung tissue was observed by hematoxylin eosin staining.
RESULTSThe airway responsiveness of the NA group was signifificantly higher than the normal control group (P<0.05), while those in the LTZ and DXM groups were signifificantly lower than the NA group (P<0.05). The neutrophil and eosinophil counts in the LTZ and DXM groups were signifificantly lower than the NA group (P<0.05), and those in the LTZ group were signifificantly lower than the DXM group (P<0.05). There were a large number of peribronchiolar and perivascular inflammatory cells in fifiltration in the NA group. The airway inflflammation in the LTZ and DXM groups were signifificantly alleviated than the NA group. The infifiltration in the LTZ group was signifificantly reduced than the DXM group. Compared with the normal control group, the IL-17 level in BALF was signifificantly increased and the IL-10 level in BALF was signifificantly decreased in the NA group (P<0.05). LTZ and DXM treatment signifificantly decreased IL-17 levels and increased IL-10 levels compared with the NA group (P<0.05), and the changes in the above indices were more signifificant in the LTZ group (P<0.05).
CONCLUSIONLTZ could alleviate the airway inflflammation in the NA mice model through increasing the IL-10 level and decreasing the IL-17 level.
Animals ; Asthma ; blood ; complications ; drug therapy ; pathology ; Bronchoalveolar Lavage Fluid ; cytology ; Disease Models, Animal ; Female ; Interleukin-10 ; metabolism ; Interleukin-17 ; metabolism ; Leukocyte Count ; Lung ; drug effects ; pathology ; Mice, Inbred C57BL ; Neutrophils ; drug effects ; pathology ; Pneumonia ; blood ; complications ; drug therapy ; pathology ; Pyrazines ; pharmacology ; therapeutic use ; Respiratory Hypersensitivity ; blood ; complications ; drug therapy ; pathology
6.Effects of honokiol on particulate matter 2.5-induced lung injury in asthmatic mice and its mechanisms.
Jiali XU ; Xiaoxia LU ; Feng HAN
Journal of Central South University(Medical Sciences) 2018;43(7):718-724
To explore the therapeutic effect of honokiol on particulate matter 2.5 (PM2.5)-induced lung injury in asthmatic mice and the possible mechanisms.
Methods: A total of 32 BALB/C mice were randomly divided into four groups: a normal saline group, a model group, a PM2.5 group and a honokiol group (n=8 in each group). The asthma mouse model was established by ovalbumin treatment. The mice were treated with physiological saline, ovalbumin, PM2.5 and honokiol, respectively. Lung tissues and serum were collected. The pathological changes of lung tissues were evaluated. The levels of inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and serum were measured and the expressions of Toll like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), retinoid-related orphan receptor gamma-t (RORγt) and forkhead box protein 3 (Foxp3) in lung tissues were detected.
Results: 1) The lung tissues of mice in the asthma group showed obvious pathological changes and inflammatory state, suggesting that the asthma model was established successfully. PM2.5 could aggravate the pathological condition of inflammatory injury in lung tissues in asthmatic mice. 2) Compared to the PM2.5 group, the pathological symptoms in the lung tissues were alleviated in the honokiol group and the percentage of inflammatory cells in BALF and the levels of inflammatory cytokines in BALF and serum were significantly reduced (all P<0.05). 3) Compared to the PM2.5 group, the expressions of TLR4, NF-κB (p-p65) and RORγt in lung tissues were significantly decreased, while the expression of Foxp3 was increased; the ratio of RORγt/Foxp3 was also decreased in the honokiol group (all P<0.05).
Conclusion: Honokiol can resist lung injury induced by PM2.5 in asthmatic mice. These effects are through inhibiting TLR4-NF-κB pathway-mediated inflammatory response or regulating the balance of Th17/Treg cells.
Animals
;
Asthma
;
chemically induced
;
complications
;
Biphenyl Compounds
;
pharmacology
;
Bronchoalveolar Lavage Fluid
;
chemistry
;
Cytokines
;
analysis
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
pharmacology
;
Inflammation Mediators
;
analysis
;
Lignans
;
pharmacology
;
Lung
;
metabolism
;
pathology
;
Lung Injury
;
drug therapy
;
etiology
;
metabolism
;
pathology
;
Mice
;
Mice, Inbred BALB C
;
NF-kappa B
;
metabolism
;
Ovalbumin
;
Particulate Matter
;
toxicity
;
Random Allocation
;
Toll-Like Receptor 4
;
metabolism
7.Effects of Glucocorticoid-Induced Transcript 1 Gene Deficiency on Glucocorticoid Activation in Asthmatic Mice.
Cheng-Ping HU ; Qiu-Fen XUN ; Xiao-Zhao LI ; Xin-Yue HU ; Ling QIN ; Ruo-Xi HE ; Jun-Tao FENG
Chinese Medical Journal 2018;131(23):2817-2826
Background:
Glucocorticoid (GC) is the first-line therapy for asthma, but some asthmatics are insensitive to it. Glucocorticoid-induced transcript 1 gene (GLCCI1) is reported to be associated with GCs efficiency in asthmatics, while its exact mechanism remains unknown.
Methods:
A total of 30 asthmatic patients received fluticasone propionate for 12 weeks. Forced expiratory volume in 1 s (FEV) and GLCCI1 expression were detected. Asthma model was constructed in wild-type and GLCCI1 knockout (GLCCI1) mice. Glucocorticoid receptor (GR) and mitogen-activated protein kinase phosphatase 1 (MKP-1) expression were detected by polymerase chain reaction and Western blotting (WB). The phosphorylation of p38 mitogen-activated protein kinase (MAPK) was also detected by WB.
Results:
In asthmatic patients, the change of FEV was well positively correlated with change of GLCCI1 expression (r = 0.430, P = 0.022). In animal experiment, GR and MKP-1 mRNA levels were significantly decreased in asthmatic mice than in control mice (wild-type: GR: 0.769 vs. 1.000, P = 0.022; MKP-1: 0.493 vs. 1.000, P < 0.001. GLCCI1: GR: 0.629 vs. 1.645, P < 0.001; MKP-1: 0.377 vs. 2.146, P < 0.001). Hydroprednisone treatment significantly increased GR and MKP-1 mRNA expression levels than in asthmatic groups; however, GLCCI1 asthmatic mice had less improvement (wild-type: GR: 1.517 vs. 0.769, P = 0.023; MKP-1: 1.036 vs. 0.493, P = 0.003. GLCCI1: GR: 0.846 vs. 0.629, P = 0.116; MKP-1: 0.475 vs. 0.377, P = 0.388). GLCCI1 asthmatic mice had more obvious phosphorylation of p38 MAPK than wild-type asthmatic mice (9.060 vs. 3.484, P < 0.001). It was still higher even though after hydroprednisone treatment (6.440 vs. 2.630, P < 0.001).
Conclusions:
GLCCI1 deficiency in asthmatic mice inhibits the activation of GR and MKP-1 and leads to more obvious phosphorylation of p38 MAPK, leading to a decremental sensitivity to GCs.
Trial Registration
ChiCTR.org.cn, ChiCTR-RCC-13003634; http://www.chictr.org.cn/showproj.aspx?proj=5926.
Animals
;
Asthma
;
drug therapy
;
metabolism
;
Dual Specificity Phosphatase 1
;
genetics
;
metabolism
;
Forced Expiratory Volume
;
genetics
;
physiology
;
Glucocorticoids
;
therapeutic use
;
Mice
;
Mice, Knockout
;
Phosphorylation
;
genetics
;
physiology
;
Receptors, Glucocorticoid
;
deficiency
;
genetics
;
metabolism
;
p38 Mitogen-Activated Protein Kinases
;
genetics
;
metabolism
8.Expression and significance of mTOR/4EBP1/HIF-1α/VEGF signaling pathway in lung tissues of asthmatic mice.
Li WANG ; Yan-Li ZHANG ; Xiu-Fang WANG ; Zhe SONG ; Wei WANG
Chinese Journal of Contemporary Pediatrics 2017;19(1):104-110
OBJECTIVETo study the expression and significance of the mammalian target of rapamycin (mTOR)/eukaryote initiating factor 4E binding protein 1(4EBP1)/hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway in asthmatic mice.
METHODSForty SPF level 6-8 week-old female Balb/C mice were randomly divided into control, asthma, budesonide and mTOR inhibitor (rapamycin) intervention groups (n=10 each). The asthmatic mouse model was prepared via OVA induction and challenge test. The intervention groups were administered with rapamycin at the dosage of 3 mg/kg by an intraperitoneal injection or budesonide suspension at the dosage of l mg by aerosol inhalation respectively 30 minutes before the OVA challenge. The control and asthma groups were treated with normal saline instead. The concentrations of HIF-1α and VEGF in bronchoalveolar lavage fluid (BALF) were examined using ELISA 24 hours after the last challenge. The pathological changes of lung tissue were observed by hematoxylin-eosin (HE) staining. The p-mTOR and p-4EBP1 from the lung tissues were detected by immunohistochemistry and Western blot. Pearson analysis was used to study the correlation between p-mTOR, p-4EBP1, HIF-1α, and VEGF expression.
RESULTSCompared with the control group, inflammatory cell infiltration and secretions in the trachea increased in the asthma group. The levels of HIF-1α and VEGF in BALF and p-mTOR and p-4EBP1 expression in lung tissues also increased (P<0.01). Compared with the asthma group, inflammatory cell infiltration and secretions in the trachea were reduced in the two intervention groups, and the levels of HIF-1α and VEGF in BALF and p-mTOR and p-4EBP1 expression in lung tissues were also reduced (P<0.01). There were no significant differences in the above changes between the two intervention groups and control group (P>0.05). In the asthma group, there was a pairwise positive correlation between lung p-mTOR and p-4EBP1 expression and HIF-1α and VEGF levels in BALF (P<0.05). However, there were no correlations in the above indexes in the intervention groups and control group.
CONCLUSIONSp-mTOR, p-4EBP1, HIF-1α and VEGF together are involved in the pathogenesis of asthma. Rapamycin treatment can block this signaling pathway, suggesting that this pathway can be used as a novel target for asthma treatment.
Animals ; Asthma ; drug therapy ; metabolism ; Carrier Proteins ; analysis ; physiology ; Female ; Hypoxia-Inducible Factor 1, alpha Subunit ; analysis ; physiology ; Lung ; chemistry ; pathology ; Mice ; Mice, Inbred BALB C ; Phosphoproteins ; analysis ; physiology ; Signal Transduction ; physiology ; TOR Serine-Threonine Kinases ; analysis ; physiology ; Vascular Endothelial Growth Factor A ; analysis ; physiology
9.Effect of intranasal rosiglitazone on airway inflammation and remodeling in a murine model of chronic asthma.
Hwa Young LEE ; Chin Kook RHEE ; Ji Young KANG ; Chan Kwon PARK ; Sook Young LEE ; Soon Suk KWON ; Young Kyoon KIM ; Hyoung Kyu YOON
The Korean Journal of Internal Medicine 2016;31(1):89-97
BACKGROUND/AIMS: Asthma is characterized by airway hyperresponsiveness, inflammation, and remodeling. Peroxisome proliferator-activated receptors have been reported to regulate inflammatory responses in many cells. In this study, we examined the effects of intranasal rosiglitazone on airway remodeling in a chronic asthma model. METHODS: We developed a mouse model of airway remodeling, including smooth muscle thickening, in which ovalbumin (OVA)-sensitized mice were repeatedly exposed to intranasal OVA administration twice per week for 3 months. Mice were treated intranasally with rosiglitazone with or without an antagonist during OVA challenge. We determined airway inflammation and the degree of airway remodeling by smooth muscle actin area and collagen deposition. RESULTS: Mice chronically exposed to OVA developed sustained eosinophilic airway inflammation, compared with control mice. Additionally, the mice developed features of airway remodeling, including thickening of the peribronchial smooth muscle layer. Administration of rosiglitazone intranasally inhibited the eosinophilic inflammation significantly, and, importantly, airway smooth muscle remodeling in mice chronically exposed to OVA. Expression of Toll-like receptor (TLR)-4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) was increased in the OVA group and decreased in the rosiglitazone group. Co-treatment with GW9660 (a rosiglitazone antagonist) and rosiglitazone increased the expression of TLR-4 and NF-kappaB. CONCLUSIONS: These results suggest that intranasal administration of rosiglitazone can prevent not only air way inf lammation but also air way remodeling associated with chronic allergen challenge. This beneficial effect is mediated by inhibition of TLR-4 and NF-kappaB pathways.
Actins/metabolism
;
Administration, Inhalation
;
Airway Remodeling/*drug effects
;
Animals
;
Anti-Asthmatic Agents/*administration & dosage
;
Asthma/chemically induced/*drug therapy/metabolism/physiopathology
;
Chronic Disease
;
Collagen/metabolism
;
Disease Models, Animal
;
Female
;
Lung/*drug effects/metabolism/physiopathology
;
Mice, Inbred BALB C
;
NF-kappa B/metabolism
;
Ovalbumin
;
PPAR gamma/agonists/metabolism
;
Pneumonia/chemically induced/physiopathology
;
Pulmonary Eosinophilia/chemically induced/prevention & control
;
Signal Transduction/drug effects
;
Thiazolidinediones/*administration & dosage
;
Toll-Like Receptor 4/metabolism
10.Effects of different doses of 1,25-(OH)2D3 on expression of HMGB1 and IL-17 in the lungs of asthmatic mice.
Yan-Ling LI ; Bin LUAN ; Jun-Ying QIAO ; Li-Min ZHANG
Chinese Journal of Contemporary Pediatrics 2015;17(2):190-195
OBJECTIVETo study the effects of 1,25-(OH)(2)D(3) on airway remodeling and expression of high mobility group box 1 (HMGB1) and IL-17 in asthmatic mice.
METHODSFifty female mice were randomly divided into 5 groups: control, asthma, low-dose, middle-dose, and high-dose intervention groups (n=10 each). Asthma was induced by intraperitoneal injections of ovalbumin (OVA) and aerosol inhalation of OVA solution. The low-dose, middle-dose, and high-dose intervention groups were administered with 1,25-(OH)(2)D(3) solution at the dosage of 1, 4 and 10 μg/kg respectively by intraperitoneal injections before asthma challenge. The airway structural changes were assessed by hematoxylin and eosin staining. mRNA expression levels of HMGB1 and IL-17 in the lung tissues were evaluated by RT-PCR. The protein levels of HMGB1 and IL-17 in the lung tissues were observed by immunohistochemistry.
RESULTSThe airway wall thickness, protein and mRNA expression levels of HMGB1 and IL-17 were higher in the untreated asthma group than in the control group (P<0.05). The airway wall thickness, protein and mRNA expression levels of HMGB1 and IL-17 were lower in the middle-dose and low-dose intervention groups than in the untreated asthma group, and the middle-dose intervention group demonstrated lower airway wall thickness, protein and mRNA expression levels of HMGB1 and IL-17 than in the low-dose intervention group (P<0.05). However, the airway wall thickness, protein and mRNA expression levels of HMGB1 and IL-17 in the high-dose intervention group were higher than in the untreated asthma group (P<0.05).
CONCLUSIONSHMGB1 and IL-17 may be involved in the airway remodeling process in asthmatic mice. A moderate amount of HMGB1 and IL-17 may be involved in the airway remodeling process in asthmatic mice. A moderate amount of 1,25-(OH)(2)D(3) can improve the airway remodeling, but a higher dose of 1,25-(OH)(2)D(3) may affect adversely the airway remodeling process.
Airway Remodeling ; drug effects ; Animals ; Asthma ; drug therapy ; metabolism ; pathology ; Calcitriol ; pharmacology ; Dose-Response Relationship, Drug ; Female ; HMGB1 Protein ; analysis ; genetics ; physiology ; Interleukin-17 ; analysis ; genetics ; physiology ; Lung ; metabolism ; pathology ; Mice ; Mice, Inbred BALB C

Result Analysis
Print
Save
E-mail