1.A preliminary study on the role of V-domain Ig suppressor of T cell activation in juvenile idiopathic arthritis.
Li-Ping XIAO ; Li-Na ZHOU ; Jun-Jie CHEN ; Yan ZHANG ; Xue-Mei TANG ; Juan ZHOU
Chinese Journal of Contemporary Pediatrics 2023;25(3):272-277
OBJECTIVES:
To study the expression of V-domain Ig suppressor of T cell activation (VISTA) in peripheral blood of children with juvenile idiopathic arthritis (JIA) and its role in the pathogenesis of JIA.
METHODS:
In this prospective study, peripheral blood was collected from 47 children with different subtypes of JIA and 10 healthy children. Flow cytometry was used to measure the expression levels of VISTA, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) on CD14+ mononuclear cells, CD4+ T lymphocytes, and CD8+ T lymphocytes.
RESULTS:
The children with JIA had a significantly lower expression level of VISTA than the healthy children (P<0.05). There was a significant difference in the expression of VISTA between the children with different subtypes of JIA, with the lowest expression level in those with systemic JIA (P<0.05). There was also a significant difference in the expression of VISTA between different immune cells, with a significantly higher expression level on the surface of monocytes (P<0.05). Correlation analysis showed that VISTA was negatively correlated with the expression of IFN-γ and TNF-α on CD4+ T cells (r=-0.436 and -0.382 respectively, P<0.05), CD8+ T cells (r=-0.348 and -0.487 respectively, P<0.05), and CD14+ mononuclear cells (r=-0.582 and -0.603 respectively, P<0.05).
CONCLUSIONS
The insufficient expression of VISTA may be associated with the pathogenesis of JIA, and enhancing the immunomodulatory effect of VISTA might be one option for the treatment of JIA in the future.
Child
;
Humans
;
Arthritis, Juvenile/pathology*
;
Tumor Necrosis Factor-alpha/metabolism*
;
CD8-Positive T-Lymphocytes
;
Prospective Studies
;
Interferon-gamma/metabolism*
2.Effects of Total Saponins from Dioscorea Nipponica Makino on Monosodium Urate-Induced M1-Polarized Macrophages through Arachidonic Acid Signaling Pathway: An in vitro Study.
Qi ZHOU ; Hui-Juan SUN ; Shu-Min LIU
Chinese journal of integrative medicine 2023;29(1):44-51
OBJECTIVE:
To investigate and reveal the underlying mechanism of the effect of total saponins from Dioscoreae nipponica Makino (TSDN) on the arachidonic acid pathway in monosodium urate (MSU) crystal-induced M1-polarized macrophages.
METHODS:
M1 polarization of RAW264.7 cells were induced by 1 µ g/mL lipopolysaccharide (LPS). The methylthiazolyldiphenyl-tetrazolium bromide method was then used to screen the concentration of TSDN. MSU (500 µ g/mL) was used to induce the gouty arthritis model. Afterwards, 10 µ g/L TSDN and 8 µ mol/L celecoxib, which was used as a positive control, were added to the above LPS and MSU-induced cells for 24 h. The mRNA and protein expressions of cyclooxygenase (COX) 2, 5-lipoxygenase (5-LOX), microsomal prostaglandin E synthase derived eicosanoids (mPGES)-1, leukotriene B (LTB)4, cytochrome P450 (CYP) 4A, and prostaglandin E2 (PGE2) were tested by real-time polymerase chain reaction and Western blotting, respectively. The enzyme-linked immunosorbent assay was used to test the contents of M1 markers, including inducible nitric oxid synthase (NOS) 2, CD80, and CD86.
RESULTS:
TSDN inhibited the proliferation of M1 macrophages and decreased both the mRNA and protein expressions of COX2, 5-LOX, CYP4A, LTB4, and PGE2 (P<0.01) while increased the mRNA and protein expression of mPGES-1 (P<0.05 or P<0.01). TSDN could also significantly decrease the contents of NOS2, CD80, and CD86 (P<0.01).
CONCLUSION
TSDN has an anti-inflammation effect on gouty arthritis in an in vitro model by regulating arachidonic acid signaling pathway.
Uric Acid/metabolism*
;
Arachidonic Acid/metabolism*
;
Dioscorea
;
Arthritis, Gouty
;
Lipopolysaccharides
;
Saponins/pharmacology*
;
Macrophages
;
Signal Transduction
;
RNA, Messenger/metabolism*
3.Neutrophil-lymphocyte and platelet-lymphocyte ratios for assessing disease activity in patients with rheumatoid arthritis receiving tofacitinib treatment.
Juan TANG ; Juan CHEN ; Guoxin LIN ; Hao ZHANG ; Ming GUI ; Nannan LI ; Yihong GU ; Linjuan LUO ; Jian SUN
Journal of Southern Medical University 2023;43(10):1651-1656
OBJECTIVE:
To evaluate the value of neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) for assessing disease activity in patients with rheumatoid arthritis (RA) treated with tofacitinib.
METHODS:
This retrospective study was conducted among 98 RA patients in active stage treated with tofacitinib in Third Xiangya Hospital and 100 healthy control subjects from the Health Management Center of the hospital from 2019 to 2021. We collected blood samples from all the participants for measurement of erythrocyte sedimentation rate (ESR), high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6) and other blood parameters 1 month before and 6 months after tofacitinib treatment. We further evaluated PLR and NLR before and after tofacitinib treatment in the RA patients, and analyzed their correlations with RA disease activity.
RESULTS:
PLR and NLR increased significantly in RA patients as compared with the healthy controls. In the RA patients, PLR and NLR were positively correlated with the levels of hs- CRP, ESR, IL- 6, Disease Activity Score of 28 joints-ESR (DAS28-ESR), anti-cyclic citrullinated peptide (CCP), and rheumatoid factor (RF) before and after tofacitinib treatment. Tofacitinib treatment for 6 months significantly decreased hs-CRP, ESR, IL-6, CCP, RF and DAS28-ESR levels in the RA patients.
CONCLUSION
NLR and PLR can be useful biomarkers for assessing disease activity in RA patients treated with tofacitinib.
Humans
;
Neutrophils
;
Retrospective Studies
;
C-Reactive Protein/analysis*
;
Interleukin-6/metabolism*
;
Arthritis, Rheumatoid
;
Lymphocytes
4.Total Saponin Fraction of Dioscorea Nipponica Makino Improves Gouty Arthritis Symptoms in Rats via M1/M2 Polarization of Monocytes and Macrophages Mediated by Arachidonic Acid Signaling.
Qi ZHOU ; Hui-Juan SUN ; Xi-Wu ZHANG
Chinese journal of integrative medicine 2023;29(11):1007-1017
OBJECTIVE:
To explore the mechanism of effects of total saponin fraction from Dioscorea Nipponica Makino (TSDN) on M1/M2 polarization of monocytes/macrophages and arachidonic acid (AA) pathway in rats with gouty arthritis (GA).
METHODS:
Seventy-two Sprague Dawley rats were randomly divided into 4 groups (n=18 in each): normal, model, TSDN at 160 mg/kg, and celecoxib at 43.3 mg/kg. Monosodium urate crystal (MSU) was injected into the rats' ankle joints to induce an experimental GA model. Blood and tissue samples were collected on the 3rd, 5th, and 8th days of drug administration. Histopathological changes in the synovium of joints were observed via hematoxylin and eosin (HE) staining. The expression levels of arachidonic acid (AA) signaling pathway were assessed via real-time polymerase chain reaction (qPCR) and Western blot. Flow cytometry was used to determine the proportion of M1 and M2 macrophages in the peripheral blood. An enzyme-linked immunosorbent assay (ELISA) was used to detect interleukine (IL)-1 β, tumor necrosis factor-alpha (TNF-α), IL-4, IL-10, prostaglandin E2 (PGE2), and leukotriene B4 (LTB4).
RESULTS:
HE staining showed that TSDN improved the synovial tissue. qPCR and Western blot showed that on the 3rd, 5th and 8th days of drug administration, TSDN reduced the mRNA and protein expressions of cyclooxygenase (COX)2, microsomal prostaglandin E synthase-1 derived eicosanoids (mPGES-1), 5-lipoxygenase (5-LOX), recombinant human mothers against decapentaplegic homolog 3 (Smad3), nucleotide-binding oligomerization domain-like receptor protein 3 (NALP3), and inducible nitric oxide synthase (iNOS) in rats' ankle synovial tissues (P<0.01). TSDN decreased COX1 mRNA and protein expression on 3rd and 5th day of drug administration and raised it on the 8th day (both P<0.01). It lowered CD68 protein expression on days 3 (P<0.01), as well as mRNA and protein expression on days 5 and 8 (P<0.01). On the 3rd, 5th, and 8th days of drug administration, TSDN elevated the mRNA and protein expression of Arg1 and CD163 (P<0.01). Flow cytometry results showed that TSDN decreased the percentage of M1 macrophages while increasing the percentage of M2 in peripheral blood (P<0.05 or P<0.01). ELISA results showed that on the 3rd, 5th, and 8th days of drug administration, TSDN decreased serum levels of IL-1 β, TNF-α, and LTB4 (P<0.01), as well as PGE2 levels on days 3rd and 8th days (P<0.05 or P<0.01); on day 8 of administration, TSDN increased IL-4 serum levels and enhanced IL-10 contents on days 5 and 8 (P<0.05 or P<0.01).
CONCLUSION
The anti-inflammatory effect of TSDN on rats with GA may be achieved by influencing M1/M2 polarization through AA signaling pathway.
Rats
;
Humans
;
Animals
;
Arthritis, Gouty/drug therapy*
;
Monocytes/pathology*
;
Interleukin-10/metabolism*
;
Arachidonic Acid/pharmacology*
;
Dioscorea/chemistry*
;
Rats, Wistar
;
Tumor Necrosis Factor-alpha/metabolism*
;
Saponins/therapeutic use*
;
Interleukin-4/metabolism*
;
Leukotriene B4/pharmacology*
;
Rats, Sprague-Dawley
;
Macrophages
;
Signal Transduction
;
RNA, Messenger/metabolism*
5.Berberine inhibits autophagy and promotes apoptosis of fibroblast-like synovial cells from rheumatoid arthritis patients through the ROS/mTOR signaling pathway.
Shiye ZONG ; Jing ZHOU ; Weiwei CAI ; Yun YU ; Ying WANG ; Yining SONG ; Jingwen CHENG ; Yuhui LI ; Yi GAO ; Baihai WU ; He XIAN ; Fang WEI
Journal of Southern Medical University 2023;43(4):552-559
OBJECTIVE:
To evaluate the regulatory effect of berberine on autophagy and apoptosis balance of fibroblast-like synoviocytes (FLSs) from patients with in rheumatoid arthritis (RA) and explore the mechanism.
METHODS:
The inhibitory effect of 10, 20, 30, 40, 50, 60, 70, and 80 μmol/L berberine on RA-FLS proliferation was assessed using CCK-8 method. Annexin V/PI and JC-1 immunofluorescence staining was used to analyze the effect of berberine (30 μmol/L) on apoptosis of 25 ng/mL TNF-α- induced RA-FLSs, and Western blotting was performed to detect the changes in the expression levels of autophagy- and apoptosis-related proteins. The cells were further treated with the autophagy inducer RAPA and the autophagy inhibitor chloroquine to observe the changes in autophagic flow by laser confocal detection of mCherry-EGFP-LC3B. RA-FLSs were treated with the reactive oxygen species (ROS) mimic H2O2 or the ROS inhibitor NAC, and the effects of berberine on ROS, mTOR and p-mTOR levels were observed.
RESULTS:
The results of CCK-8 assay showed that berberine significantly inhibited the proliferation of RA-FLSs in a time- and concentration-dependent manner. Flow cytometry and JC-1 staining showed that berberine (30 μmol/L) significantly increased apoptosis rate (P < 0.01) and reduced the mitochondrial membrane potential of RA-FLSs (P < 0.05). Berberine treatment obviously decreased the ratios of Bcl-2/Bax (P < 0.05) and LC3B-II/I (P < 0.01) and increased the expression of p62 protein in the cells (P < 0.05). Detection of mCherry-EGFP-LC3B autophagy flow revealed obvious autophagy flow block in berberine-treated RA-FLSs. Berberine significantly reduced the level of ROS in TNF-α-induced RA-FLSs and upregulated the expression level of autophagy-related protein p-mTOR (P < 0.01); this effect was regulated by ROS level, and the combined use of RAPA significantly reduced the pro-apoptotic effect of berberine in RA-FLSs (P < 0.01).
CONCLUSION
Berberine can inhibit autophagy and promote apoptosis of RA-FLSs by regulating the ROS-mTOR pathway.
Humans
;
Synoviocytes
;
Berberine/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Hydrogen Peroxide/metabolism*
;
Sincalide/metabolism*
;
Cell Proliferation
;
Arthritis, Rheumatoid/metabolism*
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis
;
Fibroblasts
;
Autophagy
;
Cells, Cultured
6.Alcohol extract of root and root bark of Toddalia asiatica alleviates CIA in rats through anti-inflammatory and proapoptotic effects.
Zong-Xing ZHANG ; Lu JIANG ; Dao-Zhong LIU ; Bo-Nan TAO ; Zi-Ming HOU ; Meng-Jie TIAN ; Jia FENG ; Lin YUAN
China Journal of Chinese Materia Medica 2023;48(8):2203-2211
This study aims to investigate the therapeutic effect of alcohol extract of root and root bark of Toddalia asiatica(TAAE) on collagen-induced arthritis(CIA) in rats through phosphatidylinoinosidine-3 kinase/protein kinase B(PI3K/Akt) signaling pathway. To be specific, CIA was induced in rats, and then the rats were treated(oral, daily) with TAAE and Tripterygium Glycoside Tablets(TGT), respectively. The swelling degree of the hind leg joints was scored weekly. After 35 days of administration, the histopathological changes were observed based on hematoxylin and eosin(HE) staining. Enzyme-linked immunosorbent assay(ELISA) was employed to detect the levels of cytokines [tumor necrosis factor-α(TNF-α), interleukin(IL)-6)]. Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) staining was performed to detect the apoptosis of synoviocytes in rats. Western blot was used to detect the expression levels of apoptosis-related proteins B-cell lymphoma 2(Bcl-2)-associated X(Bax), Bcl-2, and caspase-3 and pathway-related proteins phosphoinositide 3-kinase(PI3K), phosphorylated(p)-PI3K, protein kinase B(Akt), and p-Akt. RT-qPCR was conducted to examine the mRNA levels of Bax, Bcl-2, caspase-3, TNF-α, IL-6, and IL-1β and pathway-related proteins PI3K, p-PI3K, Akt, and p-Akt. TAAE can alleviate the joint swelling in CIA rats, reduce serum levels of inflammatory cytokines, improve synovial histopathological changes, promote apoptosis of synoviocytes, and inhibit synovial inflammation. In addition, RT-qPCR and Western blot results showed that TAAE up-regulated the level of Bax, down-regulated the level of Bcl-2, and activated caspase-3 to promote apoptosis in synoviocytes. TAAE effectively down-regulated the protein levels of p-PI3K and p-Akt. In this study, TAAE shows therapeutic effect on CIA in rats and reduces the inflammation. The mechanism is that it suppresses PI3K/Akt signaling pathway and promotes synoviocyte apoptosis. Overall, this study provides a new clue for the research on the anti-inflammatory mechanism of TAAE and lays a theoretical basis for the better clinical application of TAAE in the treatment of inflammatory and autoimmune diseases.
Rats
;
Animals
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Caspase 3/genetics*
;
Tumor Necrosis Factor-alpha/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Plant Bark
;
Anti-Inflammatory Agents/therapeutic use*
;
Arthritis, Experimental/chemically induced*
;
Inflammation/drug therapy*
;
Cytokines/metabolism*
;
Proto-Oncogene Proteins c-bcl-2
;
Apoptosis
7.The expression of long non-coding RNA human leukocyte antigen complex P5(lncRNA HCP5) in synovial tissue of patients with rheumatoid arthritis is up-regulated and correlated with immune cell infiltration.
Jianwei XIAO ; Xu CAI ; Xinmin HUANG ; Fenlian GUO ; Xinpeng CHEN ; Yiwei HONG ; Zhihua YIN ; Zhizhong YE
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):445-450
Objective To identify the potential long non-coding RNA (lncRNA) expressed in rheumatoid arthritis (RA) synovium key to RA onset and investigate its association with immune cell infiltration. Methods RA synovium data were downloaded from the GEO database and normalized. The lncRNAs key to RA onset were identified using multiple machine learning methods. Infiltration of 22 immune cell populations in RA synovium was measured by cell-type identification by estimating relative subsets of RNA transcripts (CIBER-SORT). The relationship between the key lncRNA and infiltrating immune cells was analyzed. Finally, real-time quantitative PCR was applied to validate the expression of the key lncRNA in RA synovial cells. Results lncRNA human leukocyte antigen complex P5(HCP5) was identified as the key lncRNA associated with RA onset. Infiltration analysis revealed increased abundance of CD8+ T cells, γδ T cells, and M1 macrophages while decreased abundance of M2 macrophages in RA synovial tissue. Correlation analysis demonstrated that the lncRNA HCP5 expression was positively associated with the infiltration abundance of CD8+ T cells, γδ T cells, and M1 macrophages in RA synovial tissue. Furthermore,the expression of lncRNA HCP5 in RA synovial cells was up-regulated. Conclusion lncRNA HCP5 expression is up-regulated in RA synovial tissue and potentially associated with immune cells infiltration.
Humans
;
Arthritis, Rheumatoid
;
CD8-Positive T-Lymphocytes
;
HLA Antigens/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Synovial Membrane/metabolism*
8.Role of Interleukin-36 in inflammatory joint diseases.
Cunyi WANG ; Ji'an HU ; Jiejun SHI
Journal of Zhejiang University. Medical sciences 2023;52(2):249-259
Interleukin (IL)-36 is a family of cytokines that belongs to the larger IL-1 superfamily. IL-36 agonist/antagonist binds to the interleukin-36 receptor involving in physiological inflammation regulation and pathogenesis of many inflammatory diseases. In inflammatory joint diseases, the expression of IL-36 changes, and some studies have initially explored the role of IL-36 in these diseases. In psoriatic arthritis, IL-36 signal mediates plasma cell and fibroblast-like synoviocyte crosstalk presenting IL-36 agonist/antagonist imbalance. In rheumatoid arthritis, IL-36 agonists induce fibroblast-like synoviocyte to produce pro-inflammatory factors, while IL-36 antagonist deficiency leads to lesion progression. In osteoarthritis, IL-36 agonists induce chondrocytes to produce catabolic enzymes and pro-inflammatory factors. This article reviews the expression and function of IL-36 in different inflammatory joint diseases to provide a reference for revealing their pathogenic mechanisms and discovering therapeutic targets.
Humans
;
Interleukins
;
Arthritis, Rheumatoid
;
Osteoarthritis/pathology*
;
Arthritis, Psoriatic/metabolism*
;
Cytokines
9.Mechanism of Gentisic Acid on Rheumatoid Arthritis Based on miR-19b-3p/RAF1 Axis.
Dou DING ; Qi ZHANG ; Fu-Jia ZENG ; Ming-Xing CAI ; Yuan GAN ; Xiao-Jun DONG
Chinese journal of integrative medicine 2023;29(6):508-516
OBJECTIVE:
To investigate the therapeutic effect of gentisic acid (GA) on rheumatoid arthritis (RA) based on the miR-19b-3p/RAF1 axis.
METHODS:
The cell counting kit-8 method was used to detect the growth inhibitory effect of different concentrations of GA on MH7A cells, and the drug concentration of GA was determined in the experiment. The quantificational real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-19b-3p and RAF1. RAF1, extracellular regulated protein kinases1/2 (ERK1/2) and phospho-ERK1/2 (p-ERK1/2) were examined by Western blotting. Three methods (dual-luciferase assay, qRT-PCR and Western blot analysis) were used to verify miR-19b-3p targeting RAF1. Flow cytometry was performed to detect MH7A cell apoptosis. Transwell and wound healing assays were used to determine the invasion and migration capacities of MH7A cells.
RESULTS:
The growth of MH7A cells was gradually inhibited with increasing GA concentration. When the GA concentration exceeded 80 mmol/L, GA was significantly cytotoxic to MH7A cells, so the half maximal inhibitory concentration of GA for MH7A cells was calculated as 67.019 mmol/L. GA upregulated miR-19b-3p expression, downregulated RAF1 expression, inhibited ERK1/2 phosphorylation, induced MH7A cell apoptosis and suppressed MH7A cell invasion and migration (P<0.05 or P<0.01). RAF1 was identified as the target of miR-19b-3p and reversed inhibitory effects on miR-19b-3p expression (P<0.05 or P<0.01). The miR-19b-3p inhibitor upregulated RAF1 expression and ERK1/2 phosphorylation, suppressed MH7A cell apoptosis and induced MH7A cell invasion and migration (P<0.01).
CONCLUSION
GA regulated miR-19b-3p/RAF1 axis to mediate ERK pathway and inhibit the development of RA.
Humans
;
Cell Proliferation
;
MicroRNAs/metabolism*
;
Arthritis, Rheumatoid/genetics*
;
Gentisates/pharmacology*
;
Cell Movement/genetics*
10.Role of ceRNA network in inflammatory cells of rheumatoid arthritis.
Xiaoyu HE ; Haohua HE ; Yan ZHANG ; Tianyu WU ; Yongjie CHEN ; Chengzhi TANG ; Tian XIA ; Xiaonan ZHANG ; Changhao XIE
Journal of Central South University(Medical Sciences) 2023;48(5):750-759
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease caused by inflammatory cells. Various inflammatory cells involved in RA include fibroblast-like synoviocytes, macrophages, CD4+T-lymphocytes, B lymphocytes, osteoclasts and chondrocytes. The close interaction between various inflammatory cells leads to imbalance of immune response and disorder of the expression of mRNA in inflammatory cells. It helps to drive production of pro-inflammatory cytokines and stimulate specific antigen-specific T- and B-lymphocytes to produce autoantibodies which is an important pathogenic factor for RA. Competing endogenous RNA (ceRNA) can regulate the expression of mRNA by competitively binding to miRNA. The related ceRNA network is a new regulatory mechanism for RNA interaction. It has been found to be involved in the regulation of abnormal biological processes such as proliferation, apoptosis, invasion and release of inflammatory factors of RA inflammatory cells. Understanding the ceRNA network in 6 kinds of RA common inflammatory cells provides a new idea for further elucidating the pathogenesis of RA, and provides a theoretical basis for the discovery of new biomarkers and effective therapeutic targets.
Humans
;
Arthritis, Rheumatoid/genetics*
;
MicroRNAs/metabolism*
;
Synoviocytes/pathology*
;
Cytokines/metabolism*
;
RNA, Messenger/metabolism*
;
Fibroblasts/pathology*
;
Cell Proliferation

Result Analysis
Print
Save
E-mail