1.Study of the clinical significance of ETAR mRNA expression in high-grade serous ovarian cancer and the inhibitory effect of ETAR derived fusion polypeptide on cancer progression.
Yan Ling ZHANG ; Xiao Kun XIA ; Meng ZHANG
Chinese Journal of Obstetrics and Gynecology 2023;58(12):930-938
Objective: To investigate the clinical significance of endothelin A receptor (ETAR) expression in high-grade serous ovarian carcinoma (HGSOC). To design ETAR carboxyl terminal (ETAR-C) amino acids derived polypeptide and to study the inhibitory effect on ovarian epithelial carcinoma cells in vitro. Methods: (1) A total of 126 patients who received surgical treatment and were diagnosed with HGSOC by postoperative pathological examination in Central Hospital of Xuzhou from January 1, 2007 to December 31, 2017 were selected. All patients had completed clinicopathological data and follow-up data. Cancer tissue samples were collected and ETAR mRNA expression in HGSOC tissues was detected by reverse transcript-PCR. The clinical significance was analyzed. (2) ETAR-C fusion polypeptide was designed based on the sequence of carboxyl terminal amino acids of ETAR, expressed and purified in vitro. The effects of ETAR-C fusion polypeptide on migration and invasion ability of ovarian cancer SKOV3 and CAOV3 cells were detected by scratch test and invasion test, respectively. The effect of ETAR-C fusion polypeptide on chemosensitivity of cisplatin-resistant ovarian cancer SKOV3/cDDP and CAOV3/cDDP cells was determined by methyl thiazolyl tetrazolium (MTT) colorimetric assay. The effect of ETAR-C fusion polypeptide on β-arrestin-1 expression in ovarian cancer SKOV3 and CAOV3 cells was detected by western blot. Results: (1) The relative expression level of ETAR mRNA in HGSOC tissues was 18.6±5.1. Patients with HGSOC were divided into high ETAR mRNA expression (n=76) and low ETAR mRNA expression (n=50) with 61.7% as cut-off value analyzed by X-Tile software. High expression of ETAR mRNA was significantly correlated with abdominal water volume, platinum drug resistance, and cancer antigen 125 (CA125) value in HGSOC patients (all P<0.05), but was not related to the age of patients with HGSOC and the size of postoperative residual lesions (all P>0.05). The 5-year progression free survival rates were 18.4% and 28.0%, and the 5-year overall survival rates were 38.2% and 52.0% in HGSOC patients with high and low ETAR mRNA expression respectively, there were statistically significant differences (P=0.046, P=0.034). (2) The results of scratch test and invasion test showed that the scratch healing rate and cell invasion rate of SKOV3 or CAOV3 cells treated with endothelin-1 (ET-1) and ET-1+ETAR-C were respectively compared, and the differences were statistically significant (all P<0.05). MTT assay showed that the inhibition rates of ETAR-C fusion polypeptide treated in SKOV3/cDDP and CAOV3/cDDP cells were significantly higher than those of control cells after the addition of 4, 6, 8, 10, 12, and 24 μg/ml cisplatin (all P<0.05). Western blot analysis showed that the relative expression levels of β-arrestin-1 in SKOV3 or CAOV3 cells treated with ET-1 and ET-1+ETAR-C were 1.85±0.09 and 1.13±0.09 (SKOV3 cells), 2.14±0.15 and 1.66±0.12 (CAOV3 cells), respectively. The differences were statistically significant (all P<0.05). Conclusions: The prognosis of HGSOC patients with high expression of ETAR mRNA is significantly worse than those with low expression of ETAR mRNA. ETAR might be a new target for HGSOC treatment. The ETAR-C fusion polypeptide that interferes with the interaction of ETAR and β-arrestin-1 has good inhibitory effect on ovarian cancer cells in vitro, and might have clinical application potential.
Female
;
Humans
;
Amino Acids/therapeutic use*
;
beta-Arrestins/therapeutic use*
;
Cell Line, Tumor
;
Cisplatin/pharmacology*
;
Clinical Relevance
;
Ovarian Neoplasms/pathology*
;
Receptor, Endothelin A/therapeutic use*
;
RNA, Messenger/metabolism*
2.Naringenin inhibits thoracic aortic aneurysm formation in mice with Marfan syndrome.
Zhi Qing LI ; Bing YU ; Ze Yu CAI ; Ying Bao WANG ; Xu ZHANG ; Biao ZHOU ; Xiao Hong FANG ; Fang YU ; Yi FU ; Jin Peng SUN ; Wei LI ; Wei KONG
Journal of Peking University(Health Sciences) 2022;54(5):896-906
OBJECTIVE:
To identify whether naringenin plays a protective role during thoracic aneurysm formation in Marfan syndrome.
METHODS:
To validate the effect of naringenin, Fbn1C1039G/+ mice, the mouse model of Marfan syndrome, were fed with naringenin, and the disease progress was evaluated. The molecular mechanism of naringenin was further investigated via in vitro studies, such as bioluminescence resonance energy transfer (BRET), atomic force microscope and radioligand receptor binding assay.
RESULTS:
Six-week-old Fbn1C1039G/+ mice were fed with naringenin for 20 weeks. Compared with the control group, naringenin significantly suppressed the aortic expansion [Fbn1C1039G/+ vs. Fbn1C1039G/++naringenin: (2.49±0.47) mm, n=18 vs. (1.87±0.19) mm, n=22, P < 0.05], the degradation of elastin, and the expression and activity of matrix metalloproteinase 2 (MMP2) and MMP9 in the ascending aorta of Fbn1C1039G/+ mice. Besides, treatment with naringenin for 6 weeks also attenuated the disease progress among the 20-week-old Fbn1C1039G/+ mice with established thoracic aortic aneurysms [Fbn1C1039G/+ vs. Fbn1C1039G/++naringenin: (2.24±0.23) mm, n=8 vs. (1.90±0.17) mm, n=8, P < 0.05]. To understand the underlying molecular mechanisms, we examined the effects of naringenin on angiotensin Ⅱ type 1 receptor (AT1) signaling and transforming growth factor-β (TGF-β) signaling respectively, which were the dominant signaling pathways contributing to aortopathy in Marfan syndrome as previously reported. The results showed that naringenin decreased angiotensin Ⅱ (Ang Ⅱ)-induced phosphorylation of protein kinase C (PKC) and extracellular regulating kinase 1/2 (ERK1/2) in HEK293A cell overexpressing AT1 receptor. Moreover, naringenin inhibited Ang Ⅱ-induced calcium mobilization and uclear factor of activated T-cells (NFAT) signaling. The internalization of AT1 receptor and its binding to β-arrestin-2 with Ang Ⅱ induction were also suppressed by naringenin. As evidenced by atomic force microscope and radioligand receptor binding assay, naringenin inhibited Ang Ⅱ binding to AT1 receptor. In terms of TGF-β signaling, we found that feeding the mice with naringenin decreased the phosphorylation of Smad2 and ERK1/2 as well as the expression of TGF-β downstream genes. Besides, the serum level of TGF-β was also decreased by naringenin in the Fbn1C1039G/+ mice. Furthermore, we detected the effect of naringenin on platelet, a rich source of TGF-β, both in vivo and in vitro. And we found that naringenin markedly decreased the TGF-β level by inhibiting the activation of platelet.
CONCLUSION
Our study showed that naringenin has a protective effect on thoracic aortic aneurysm formation in Marfan syndrome by suppressing both AT1 and TGF-β signaling.
Angiotensin II/metabolism*
;
Animals
;
Aortic Aneurysm, Thoracic/prevention & control*
;
Calcium/metabolism*
;
Disease Models, Animal
;
Elastin/metabolism*
;
Fibrillin-1/metabolism*
;
Flavanones
;
Marfan Syndrome/metabolism*
;
Matrix Metalloproteinase 2
;
Matrix Metalloproteinase 9
;
Mice
;
Mice, Inbred C57BL
;
Protein Kinase C/metabolism*
;
Receptor, Angiotensin, Type 1/metabolism*
;
Transforming Growth Factor beta/metabolism*
;
Transforming Growth Factors/metabolism*
;
beta-Arrestins/metabolism*
3.β-arrestin2 recruitment by β-adrenergic receptor agonists and antagonists.
Yi-Ran WANG ; De-Qin CHENG ; Lan MA ; Xing LIU
Acta Physiologica Sinica 2022;74(6):993-1004
A large number of β-adrenergic receptor (β-AR) agonists and antagonists are widely used in the treatment of cardiovascular diseases and other diseases. Nonetheless, it remains unclear whether these commonly used β-AR drugs can activate downstream β- arrestin-biased signaling pathways. The objective of this study was to investigate β-arrestin2 recruitment effects of β-AR agonists and antagonists that were commonly used in clinical practice. We used TANGO (transcriptional activation following arrestin translocation) assay to detect the β-arrestin2 recruitment by β-AR ligands in HEK293 cell line (HTLA cells) stably transfected with tetracycline transactivator protein (tTA) dependent luciferase reporter and β-arrestin2-TEV fusion gene. Upon activation of β-AR by a β-AR ligand, β-arrestin2 was recruited to the C terminus of the receptor, followed by cleavage of the G protein-coupled receptors (GPCRs) fusion protein at the TEV protease-cleavage site. The cleavage resulted in the release of tTA, which, after being transported to the nucleus, activated transcription of the luciferase reporter gene. The results showed that β-AR non-selective agonists epinephrine, noradrenaline and isoprenaline all promoted β-arrestin2 recruitment at β1-AR and β2-AR. β1-AR selective agonists dobutamine and denopamine both promoted β-arrestin2 recruitment at β1-AR. β2-AR selective agonists procaterol and salbutamol promoted β-arrestin2 recruitment at β2-AR. β-AR non-selective antagonists alprenolol and pindolol promoted β-arrestin2 recruitment at β1-AR. β1-AR selective antagonists celiprolol and bevantolol showed β-arrestin2 recruitment at β1-AR. β2-AR selective antagonists butoxamine showed β-arrestin2 recruitment at β1-AR. These results provide some clues for the potential action of β-AR drugs, and lay a foundation for the screening of β-arrestin-biased β-AR ligands.
Humans
;
beta-Arrestin 2/metabolism*
;
HEK293 Cells
;
Adrenergic beta-Agonists/pharmacology*
;
Isoproterenol/pharmacology*
;
Receptors, Adrenergic, beta-2/metabolism*
;
Norepinephrine/pharmacology*
4.β-arrestin1 Promotes the Concentration of Mitochondrial Reactive Oxygen in T-ALL Cells via MiR-652-5p.
Hao-Biao WANG ; Shan LIU ; Wei GUO ; Hai-Yan LIU ; Jie YU ; Lin ZOU
Journal of Experimental Hematology 2021;29(5):1456-1461
OBJECTIVE:
To investigate the effect of β-arrestin1 on the concentration of reactive oxygen species (ROS) in the mitochondria of acute T-lymphocytic leukemia (T-ALL) cells and its possible mechanisms.
METHODS:
The stable T-ALL cell line with knocked down β-arrestin1 (Jurkat Siβ1) was constructed. Flow cytometry and probe assays were used to detect ROS content in cell and mitochondrial, respectively. The relationship between β-arrestin1 and microRNA was detected, analyzed and Q-PCR confirmed by microRNA microarray. The target genes of microRNA were predicated by miRbase software, identified by Western blot, and validated by Dual luciferase reporter gene.
RESULTS:
Jurkat Siβ1 stable cell line was successfully constructed and it was found that ROS content was slightly reduced in Jurkat Siβ1 at the whole cell level, and the ROS content was also significantly reduced in mitochondria. MicroRNA microarray analysis revealed that multiple T-ALL related microRNAs showed differentially expressed, in which the expression of miR-652-5p was significantly increased in Jurkat Siβ1 (P<0.05 fold>2.0), and Q-PCR showed that miR-652-5p was nearly 5-fold up-regulated in Jurkat Siβ1. miRbase predicted that the P62 gene was the target gene of miR-652-5p which could regulates mitochondrial function. P62 protein showed highly expressed in stably knocked down miR-652-5p in Jurkat cells. Dual luciferase reporter gene assay confirms that P62 was the target gene of miR-652-5p.
CONCLUSION
β-arrestin1 can decreases the expression of miR-652-5p and deregulates the translational inhibition of P62 mRNA, thus to increase ROS content in mitochondria of T-ALL cells.
Humans
;
MicroRNAs/genetics*
;
Mitochondria
;
Oxygen
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma
;
RNA, Messenger
;
beta-Arrestin 1
5.β-arrestin1 overexpression suppresses progression of human T-cell acute lymphatic leukemia Molt-4 cell xenograft in mice.
Jia ZHANG ; Yi SHU ; Hongyang ZHANG ; Tingting JIANG ; Maoyuan GONG ; Dan ZHU ; Haobiao WANG ; Lin ZOU
Journal of Southern Medical University 2020;40(5):654-660
OBJECTIVE:
To investigate the effect of β-arrestin1 overexpression on tumor progression in a NCG mouse model bearing T-cell acute lymphocytic leukemia (T-ALL) Molt-4 cell xenograft.
METHODS:
Molt-4 cells were tagged with firefly-luciferase (F-Luc) by lentiviral infection, and fluorescence intensity of the cells was detected using a luminescence detector. Molt-4 cell lines with β-arrestin1 overexpression or knockdown were constructed by lentivirus infection and injected the tail vein in sub-lethal irradiated NCG mice. Body weight changes and survival time of the xenografted mice were observed, and the progression of T-ALL in the mice was evaluated using an fluorescence imaging system. Sixteen days after xenografting, the mice were euthanatized and tumor cell infiltration was observed in the slices of the liver and spleen.
RESULTS:
We successfully tagged Molt-4 cells with F-Luc and overexpressed or knocked down β-arrestin1 in the tagged cells. Bioluminescent imaging showed obvious luminescence catalyzed by F-Luc in Molt-4 cells. After injection of Molt-4-Luc cells into irradiated NCG mice, a gradual enhancement of luminescence in the xenografted mice was observed over time, while the body weight of the mice decreased. Compared with the control mice, the mice xenografted with β-arrestin1-overexpressing Molt-4 cells had significantly prolonged survival time ( < 0.001), while the survival time of the mice xenografted with Molt-4 cells with β- arrestin1 knockdown was significantly shortened ( < 0.001). Histological examination revealed fewer infiltrating tumor cells in the liver and spleen of the mice xenografted with β-arrestin1-overexpressing Molt-4 cells in comparison with the mice bearing parental Molt-4 cell xenografts.
CONCLUSIONS
β-arrestin1 overexpression suppresses tumor progression in mice bearing Molt-4 cell xenograft.
Animals
;
Disease Progression
;
Heterografts
;
Humans
;
Mice
;
T-Lymphocytes
;
Transplantation, Heterologous
;
beta-Arrestin 1
6.β-arrestin 1 Promotes Senescence of Acute Lymphoblastic Leukemia Jurkat Cells.
Wei GUO ; Shan LIU ; Hai-Yan LIU ; Yan-Hua CHEN ; Hang ZHANG ; Wen-Qiong LYU ; Lin ZOU
Journal of Experimental Hematology 2019;27(3):777-784
OBJECTIVE:
To investigate the effect of β-arrestin1 gene on senescence of T-ALL cells and its possible mechanism.
METHODS:
The bone marrow specimens of T-ALL patients and controls were collected, the expression of β-arrestin1 and β-arrestin1 in the T-ALL patients was detected by RT-PCR and Western blot, respectively, and the relation of β-arrestin1 expression with the clinical pathologic characteristics and the prognosis of T-ALL patients was analyzed statistically. The stable Jurkat cell line with knocked down or overexpressed β-arrestin1 was constructed, the CCK method was used to detect the Jurkat cell number, the β-gal staining was used to analyze the effect of β-arrestin1 on senescence of Jurkat cells, the cross analysis of RNA-Seg data and KEGG data was performed for screening the possible signaling pathway, and Western blot was performed for varifying the key sites of signaling pathway.
RESULTS:
The β-arrestin1 expression in specimens of T-ALL patients decreased (P<0.01), moreover the β-arrestin1 expression negatively related with peripheral blood cell number (r=-0.601), the blasts in peripheral blood (r=-0.516) and extramedullary infiltration (r=-0.359), while positively related with the response to chemotherapy (r=0.393). The detection of stable Jurkat cell line with knocked-down and overexpressed β-arrestin1 found that the β-arrestin 1 could decrease the Jurkat cell number and accelarate the senescence of Jurkat cells (P<0.05). The cross analysis of RNA-Seg data and KEGG data showed that the senescence of T-ALL cells may be regulated via RAS-P16-PRb-E2F1 by β-arrestin 1. Western bolt confirmed that β-arrestin1 promoted the expression of Ras and p16, and decreased the expression of pRB and E2F1 (P<0.05).
CONCLUSIONS
β-arrestin1 accelerates the senescence of Jurkat cells via Ras-p16-pRb-E2F1, and delays the progression in T-ALL, which may provide a new hypothesis for the pathogenesis of T-ALL.
Cellular Senescence
;
Humans
;
Jurkat Cells
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma
;
genetics
;
Prognosis
;
beta-Arrestin 1
;
genetics
7.Role of Helix 8 in Dopamine Receptor Signaling
Han Sol YANG ; Ningning SUN ; Xiaodi ZHAO ; Hee Ryung KIM ; Hyun Ju PARK ; Kyeong Man KIM ; Ka Young CHUNG
Biomolecules & Therapeutics 2019;27(6):514-521
G protein-coupled receptors (GPCRs) are membrane receptors whose agonist-induced dynamic conformational changes trigger heterotrimeric G protein activation, followed by GRK-mediated phosphorylation and arrestin-mediated desensitization. Cytosolic regions of GPCRs have been studied extensively because they are direct contact sites with G proteins, GRKs, and arrestins. Among various cytosolic regions, the role of helix 8 is least understood, although a few studies have suggested that it is involved in G protein activation, receptor localization, and/or internalization. In the present study, we investigated the role of helix 8 in dopamine receptor signaling focusing on dopamine D1 receptor (D1R) and dopamine D2 receptor (D2R). D1R couples exclusively to Gs, whereas D2R couples exclusively to Gi. Bioinformatic analysis implied that the sequences of helix 8 may affect GPCR-G protein coupling selectivity; therefore, we evaluated if swapping helix 8 between D1R and D2R changed G protein selectivity. Our results suggest that helix 8 is not involved in D1R-Gs or D2R-Gi coupling selectivity. Instead, we observed that D1R with D2R helix 8 or D1R with an increased number of hydrophobic residues in helix 8 relative to wild-type showed diminished β-arrestin-mediated desensitization, resulting in increased Gs signaling.
Arrestin
;
Arrestins
;
Computational Biology
;
Cytosol
;
Dopamine
;
Family Characteristics
;
GTP-Binding Proteins
;
Membranes
;
Phosphorylation
;
Receptors, Dopamine D1
;
Receptors, Dopamine D2
;
Receptors, Dopamine
8.Arrestins: structural disorder creates rich functionality.
Vsevolod V GUREVICH ; Eugenia V GUREVICH ; Vladimir N UVERSKY
Protein & Cell 2018;9(12):986-1003
Arrestins are soluble relatively small 44-46 kDa proteins that specifically bind hundreds of active phosphorylated GPCRs and dozens of non-receptor partners. There are binding partners that demonstrate preference for each of the known arrestin conformations: free, receptor-bound, and microtubule-bound. Recent evidence suggests that conformational flexibility in every functional state is the defining characteristic of arrestins. Flexibility, or plasticity, of proteins is often described as structural disorder, in contrast to the fixed conformational order observed in high-resolution crystal structures. However, protein-protein interactions often involve highly flexible elements that can assume many distinct conformations upon binding to different partners. Existing evidence suggests that arrestins are no exception to this rule: their flexibility is necessary for functional versatility. The data on arrestins and many other multi-functional proteins indicate that in many cases, "order" might be artificially imposed by highly non-physiological crystallization conditions and/or crystal packing forces. In contrast, conformational flexibility (and its extreme case, intrinsic disorder) is a more natural state of proteins, representing true biological order that underlies their physiologically relevant functions.
Animals
;
Arrestins
;
chemistry
;
metabolism
;
Humans
;
Protein Conformation
9.β-arrestin1 promotes chronic myeloid leukemia cell proliferation by activating JNK signaling pathway.
Hui CHEN ; Kang LI ; Yi WANG ; Zhenglan TAN ; Lin ZOU
Journal of Southern Medical University 2015;35(5):677-681
OBJECTIVETo investigate the signaling pathways involved in β-arrestin1-induced proliferation of K562 cells.
METHODSWe established stable cell lines K562-siβ1 and K562-β1 by lentivirus-mediated β-arrestin1 knock-down or overexpression in K562 cells, with cells transfected with non-specific siRNA as the control (K562-Ctrl). The proliferation of these cells were evaluated by cell counting and CCK-8 assays. Western blotting was used to detect the expression of JNK and p-JNK in the cells, and co-immunoprecipitation (Co-IP) assay was employed to investigate the interaction between β-arrestin1 and Src.
RESULTSK562-β1 cells showed significantly greater but K562-siβ1 cells had significantly lower proliferation ability and cell survival rate than K562-Ctrl cells. Western blotting showed that β-arrestin1 specifically enhanced the expression of p-JNK, and the JNK inhibitor SP600125 obviously suppressed p-JNK and cell proliferation of K562 cells. Co-IP assay revealed the binding of β-arrestin1 to Src.
CONCLUSIONSIn K562 cells, β-arrestin1 activates JNK signaling pathway by binding to Src to promote the cell proliferation.
Arrestins ; metabolism ; Cell Proliferation ; Cell Survival ; Humans ; K562 Cells ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive ; metabolism ; MAP Kinase Signaling System ; RNA, Small Interfering ; beta-Arrestins
10.Role of DOR-β-arrestin1-Bcl2 signal transduction pathway and intervention effects of oxymatrine in ulcerative colitis.
Pi-Qi ZHOU ; Heng FAN ; Hui HU ; Qing TANG ; Xing-xing LIU ; Li-juan ZHANG ; Min ZHONG ; Zhe-xing SHOU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(6):815-820
This study was aimed to investigate the role of the delta-opioid receptor (DOR)-β-arrestin1-Bcl-2 signal transduction pathway in the pathogenesis of ulcerative colitis (UC) and the intervention effects of oxymatrine on UC. Forty Sprague-Dawley rats were divided into normal group, model group, oxymatrine-treated group and mesalazine-treated group (n=10 each) at random. The rat UC model was established by intra-colonic injection of trinitrobenzene sulfonic acid in the model group and two treatment groups. The rats in oxymatrine-treated group were subjected to intramuscular injection of oxymatrine [63 mg/(kg·day)] for 15 days, and those in mesalazine-treated group given mesalazine solution [0.5 g/(kg·day)] by gastric lavage for the same days. Animals in normal group and model group were administered 3 mL water by gastric lavage for 15 days. On the 16th day, after fasting for 24 h, the rats were sacrificed for the removal of colon tissues. The expression levels of DOR, β-arrestin1 and Bcl-2 were determined in colon tissues by immunohistochemistry and real-time quantitative polymerase chain reaction (RT-PCR), respectively. It was found that the expression levels of DOR, β-arrestin1 and Bcl-2 protein and mRNA were significantly increased in the model group as compared with the other groups (P<0.05). They were conspicuously decreased in both mesalazine-treated and oxymatrine-treated groups in contrast to the model group (P<0.05). No statistically significant difference was noted in these indices between mesalazine- and oxymatrinetreated groups (P>0.05). This study indicated that the DOR-β-arrestin1-Bcl-2 signal transduction pathway may participate in the pathogenesis of UC. Moreover, oxymatrine can attenuate the development of UC by regulating the DOR-β-arrestin1-Bcl-2 signal transduction pathway.
Alkaloids
;
pharmacology
;
Animals
;
Anti-Arrhythmia Agents
;
pharmacology
;
Arrestins
;
metabolism
;
Colitis, Ulcerative
;
metabolism
;
pathology
;
prevention & control
;
Male
;
Proto-Oncogene Proteins c-bcl-2
;
metabolism
;
Quinolizines
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Opioid, delta
;
metabolism
;
Signal Transduction
;
drug effects
;
beta-Arrestins

Result Analysis
Print
Save
E-mail