1.Gastroprotective Effect of Cochinchina momordica Seed Extract in Nonsteroidal Anti-Inflammatory Drug-Induced Acute Gastric Damage in a Rat Model.
Ji Hwan LIM ; Joo Hyun KIM ; Nayoung KIM ; Byoung Hwan LEE ; Pyoung Ju SEO ; Jung Mook KANG ; So Young JO ; Ji Hyun PARK ; Ryoung Hee NAM ; Hyun CHANG ; Jin Won KWON ; Dong Ho LEE
Gut and Liver 2014;8(1):49-57
		                        		
		                        			
		                        			BACKGROUND/AIMS: The major compounds of Cochinchina momordica seed extract (SK-MS10) include momordica saponins. We report that the gastroprotective effect of SK-MS10 in an ethanol-induced gastric damage rat model is mediated by suppressing proinflammatory cytokines and downregulating cytosolic phospholipase A2 (cPLA2), 5-lipoxygenase (5-LOX), and the activation of calcitonin gene-related peptide. In this study, we evaluated the gastroprotective effects of SK-MS10 in the nonsteroidal anti-inflammatory drug (NSAID)-induced gastric damage rat model. METHODS: The pretreatment effect of SK-MS10 was evaluated in the NSAID-induced gastric damage rat model using aspirin, indomethacin, and diclofenac in 7-week-old rats. Gastric damage was evaluated based on the gross ulcer index by gastroenterologists, and the damage area (%) was measured using the MetaMorph 7.0 video image analysis system. Myeloperoxidase (MPO) was measured by enzyme-linked immunosorbent assay, and Western blotting was used to analyze the levels of cyclooxygenase (COX)-1, COX-2, cPLA2, and 5-LOX. RESULTS: All NSAIDs induced gastric damage based on the gross ulcer index and damage area (p<0.05). Gastric damage was significantly attenuated by SK-MS10 pretreatment compared with NSAID treatment alone (p<0.05). The SK-MS10 pretreatment group exhibited lower MPO levels than the diclofenac group. The expression of cPLA2 and 5-LOX was decreased by SK-MS10 pretreatment in each of the three NSAID treatment groups. CONCLUSIONS: SK-MS10 exhibited a gastroprotective effect against NSAID-induced acute gastric damage in rats. However, its protective mechanism may be different across the three types of NSAID-induced gastric damage models in rats.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anti-Inflammatory Agents, Non-Steroidal/adverse effects
		                        			;
		                        		
		                        			Arachidonate 5-Lipoxygenase/drug effects
		                        			;
		                        		
		                        			Calcitonin Gene-Related Peptide/drug effects
		                        			;
		                        		
		                        			Cyclooxygenase 1/drug effects
		                        			;
		                        		
		                        			Cyclooxygenase 2/drug effects
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Gastric Mucosa/chemistry/drug effects
		                        			;
		                        		
		                        			Group IV Phospholipases A2/drug effects
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Momordica/*chemistry
		                        			;
		                        		
		                        			Peroxidase/drug effects
		                        			;
		                        		
		                        			Plant Extracts/*pharmacology
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Seeds/*chemistry
		                        			;
		                        		
		                        			Stomach Ulcer/chemically induced/*prevention & control
		                        			;
		                        		
		                        			Treatment Outcome
		                        			
		                        		
		                        	
2.Short-term intensive atorvastatin therapy improves endothelial function partly via attenuating perivascular adipose tissue inflammation through 5-lipoxygenase pathway in hyperlipidemic rabbits.
Xiaoqiao WANG ; Yongqin LIN ; Niansang LUO ; Zhongqing CHEN ; Miaoning GU ; Jingfeng WANG ; Yangxin CHEN ;
Chinese Medical Journal 2014;127(16):2953-2959
BACKGROUNDAtherosclerosis is a kind of disease with multiple risk factors, of which hyperlipidemia is a major classical risk factor resulting in its pathogenesis and development. The aim of this study was to determine the effects of short-term intensive atorvastatin (IA) therapy on vascular endothelial function and explore the possible mechanisms that may help to explain the clinical benefits from short-term intensive statin therapy.
METHODSAfter exposure to high-fat diet (HFD) for 8 weeks, the animals were, respectively, treated with IA or low-dose atorvastatin (LA) for 5 days. Blood lipids, C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide (NO), endothelin-1 (ET-1), and endothelium-dependent vasorelaxation function were, respectively, measured. mRNA and protein expression of CRP, TNF-α, IL-6, macrophage chemoattractant protein-1 (MCP-1), and 5-lipoxygenase (5-LO) were also evaluated in pericarotid adipose tissue (PCAT) and cultured adipocytes.
RESULTSHFD increased serum inflammatory factor levels; induced significant hyperlipidemia and endothelial dysfunction, including imbalance between NO and ET-1; enhanced inflammatory factors and 5-LO expression; and promoted macrophage infiltration into adipose tissue. Five-day IA therapy could significantly decrease serum inflammatory factor levels and their expression in PCAT; restore the balance between NO and ET-1; and improve endothelial function and macrophage infiltration without significant changes in blood lipids. However, all of the above were not observed in LA therapy. In vitro experiment found that lipopolysaccharide (LPS) enhanced the expression of inflammatory factors and 5-LO in cultured adipocytes, which could be attenuated by short-time (6 hours) treatment of high-dose (5 µmol/L) but not low-dose (0.5 µmol/L) atorvastatin. In addition, inhibiting 5-LO by Cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC, a potent and direct 5-LO inhibitor) could significantly downregulate the above-mentioned gene expression in LPS-treated adipocytes.
CONCLUSIONShort-term IA therapy could significantly ameliorate endothelial dysfunction induced by HFD, which may be partly due to attenuating inflammation of PCAT through inhibiting 5-LO pathway.
Adipose Tissue ; drug effects ; immunology ; Animals ; Arachidonate 5-Lipoxygenase ; metabolism ; Atorvastatin Calcium ; Heptanoic Acids ; therapeutic use ; Hyperlipidemias ; drug therapy ; immunology ; Inflammation ; drug therapy ; immunology ; Lipid Metabolism ; drug effects ; Male ; Pyrroles ; therapeutic use ; Rabbits
3.Protective mechanisms of sevoflurane against one-lung ventilation-induced acute lung injury: role of cyclooxygenase-2 and 5-lipoxygenase pathways.
Rui LIU ; Jing LUO ; Jiang LI ; Qingjie MA ; Jingzhe SUN ; Yanhua LI ; Dianhua WANG
Journal of Southern Medical University 2013;33(5):625-630
OBJECTIVETo explore the protective mechanisms of sevoflurane against acute lung injury (ALI) induced by one-lung ventilation (OLV) in view of cyclooxygenase-2 (COX2) and 5-lipoxygenase (5-LOX) pathways.
METHODEighteen healthy Japanese white rabbits were randomized into sham-operated group (S group), OLV group (O group) and OLV + sevoflurane group (OS group). COX2 and 5-LOX protein and mRNA expressions in the lungs were detected by Western blotting and real-time PCR, respectively. Prostaglandin I2 (PGI2), thromboxane A2 (TXA2) and leukotrienes B2 (LTB2) in the lung tissues were quantified with ELISA. Histological scores and lung wet/dry weight (W/D) ratios were determined for lung injury assessment.
RESULTSCOX2 and 5-LOX protein and mRNA expressions and the contents of LTB2, TXA2 and PGI2 in the lungs, lung W/D ratio and histological scores were significantly higher while PGI2/TXA2 ratio was significantly lower in O group and OS group than in S group (P<0.05). Compared with those in O group, COX2 and 5-LOX expressions, pulmonary contents of LTB2, TXA2 and PGI2, and lung W/D ratio all decreased significantly but PGI2/TXA2 ratio was significantly elevated in OS group (P<0.05).
CONCLUSIONOLV may activate COX2 and 5-LOX pathways to result in increased production of arachidonic acid metabolites. Sevoflurane protects against OLV-induced ALI probably by reducing AA metabolites and regulating PGI2/TXA2 ratio through inhibitions of COX2 and 5-LOX pathways.
Acute Lung Injury ; etiology ; metabolism ; Animals ; Arachidonate 5-Lipoxygenase ; metabolism ; Cyclooxygenase 2 ; metabolism ; Lung ; drug effects ; metabolism ; Methyl Ethers ; adverse effects ; One-Lung Ventilation ; adverse effects ; RNA, Messenger ; genetics ; Rabbits
4.Expression of 5-lipoxygenase in hippocampal CA1 neuronal damage following global cerebral ischemia in rats.
Wenjian CHEN ; Chengtan LI ; Jianbo ZHAO ; Xiaoyan ZHANG ; Huayang HAN ; Erqing WEI ; Lihui ZHANG
Journal of Zhejiang University. Medical sciences 2013;42(1):61-66
OBJECTIVETo determine 5-lipoxygenase (5-LOX) expression and the effect of zileuton, a selective 5-LOX inhibitor,on hippocampal neuron injury induced by global cerebral ischemia in rats.
METHODSGlobal cerebral ischemia was induced by bilateral common carotid artery occlusion combined with hypotension in rats. 5-LOX expression was detected by Western blot analyses and 5-LOX localization was visualized by immunohistochemistry and double immunofluorescence methods. The 5-LOX inhibitor zileuton (10, 30, 50 mg/kg) was orally administered for 3 d after ischemia.
RESULTSThe 5-LOX expression was increased in the ischemic hippocampus on d1-7 (peaked at d3), and 5-LOX protein was primarily localized in neurons and translocated to the nuclei in the hippocampal CA1 region after ischemia. The 5-LOX inhibitor zileuton (30, 50 mg/kg) reduced ischemia-induced hippocampal neurons death 3d after ischemia.
CONCLUSION5-LOX is involved in global cerebral ischemic damage in rats, and the 5-LOX inhibitor zileuton has a protective effect on neuronal damage in the rat hippocampus following global cerebral ischemia.
Animals ; Arachidonate 5-Lipoxygenase ; metabolism ; physiology ; Brain Ischemia ; metabolism ; pathology ; CA1 Region, Hippocampal ; metabolism ; pathology ; Disease Models, Animal ; Hydroxyurea ; analogs & derivatives ; pharmacology ; Lipoxygenase Inhibitors ; pharmacology ; Male ; Neurons ; drug effects ; pathology ; Rats ; Rats, Sprague-Dawley
5.Benzoxazole Derivative B-98 Ameliorates Dextran Sulfate Sodium-induced Acute Murine Colitis and the Change of T Cell Profiles in Acute Murine Colitis Model.
Eun Mi SONG ; Sung Ae JUNG ; Jong Soo LEE ; Seung Eun KIM ; Ki Nam SHIM ; Hye Kyung JUNG ; Kwon YOO ; Hae Young PARK
The Korean Journal of Gastroenterology 2013;62(1):33-41
		                        		
		                        			
		                        			BACKGROUND/AIMS: The unique role of enzyme 5-lipoxygenase (5-LO) in the production of leukotrienes makes it a therapeutic target for inflammatory bowel disease (IBD). The aim of this study was to evaluate the effects of B-98, a newly synthesized benzoxazole derivatives and a novel 5-LO inhibitor, in a mouse model of IBD induced by dextran sulfate sodium (DSS). METHODS: C57BL/6 mice were randomly assigned to four groups: normal control, DSS colitis (DSS+saline), low dose B-98 (DSS+B-98 20 mg/kg) and high dose B-98 (DSS+B-98 100 mg/kg). B-98 was administered with 3% DSS intraperitoneally. The severity of the colitis was assessed via the disease activity index (DAI), colon length, and histopathologic grading. The production of inflammatory cytokines interleukin (IL)-6 was determined by RT-PCR. Th cells were examined for the proportion of Th1 cell, Th2 cell, Th9 cell, Th17 cell and Treg cell using intracellular cytometry. RESULTS: The B-98 group showed lower DAI, less shortening of the colon length and lower histopathologic grading compared with the DSS colitis group (p<0.01). The expression of IL-6 in colonic tissue was significantly lower in the B-98 groups than the DSS colitis group (p<0.05). The cellular profiles revealed that the Th1, Th9 and Th17 cells were increased in the DSS colitis group compared to the B-98 group (p<0.05). CONCLUSIONS: Our results suggest that acute intestinal inflammation is reduced in the group treated with B-98 by Th1, Th9 and Th17 involved cellular immunity.
		                        		
		                        		
		                        		
		                        			Acute Disease
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Arachidonate 5-Lipoxygenase/chemistry/metabolism
		                        			;
		                        		
		                        			Benzoxazoles/chemistry/*pharmacology
		                        			;
		                        		
		                        			Colitis/chemically induced/pathology/*prevention & control
		                        			;
		                        		
		                        			Colon/drug effects/pathology/physiology
		                        			;
		                        		
		                        			Dextran Sulfate/toxicity
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Forkhead Transcription Factors/metabolism
		                        			;
		                        		
		                        			Injections, Intraperitoneal
		                        			;
		                        		
		                        			Interleukin-6/genetics/metabolism
		                        			;
		                        		
		                        			Lipoxygenase Inhibitors/chemistry/*pharmacology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Severity of Illness Index
		                        			;
		                        		
		                        			T-Lymphocytes/classification/*drug effects/metabolism
		                        			
		                        		
		                        	
6.Polymorphisms in genes involved in innate immunity and susceptibility to benzene-induced hematotoxicity.
Min SHEN ; Luoping ZHANG ; Kyoung Mu LEE ; Roel VERMEULEN ; H Dean HOSGOOD ; Guilan LI ; Songnian YIN ; Nathaniel ROTHMAN ; Stephen CHANOCK ; Martyn T SMITH ; Qing LAN
Experimental & Molecular Medicine 2011;43(6):374-378
		                        		
		                        			
		                        			Benzene, a recognized hematotoxicant and carcinogen, can damage the human immune system. We studied the association between single nucleotide polymorphisms (SNPs) in genes involved in innate immunity and benzene hematotoxicity in a cross-sectional study of workers exposed to benzene (250 workers and 140 controls). A total of 1,236 tag SNPs in 149 gene regions of six pathways were included in the analysis. Six gene regions were significant for their association with white blood cell (WBC) counts (MBP, VCAM1, ALOX5, MPO, RAC2, and CRP) based on gene-region (P < 0.05) and SNP analyses (FDR < 0.05). VCAM1 rs3176867, ALOX5 rs7099684, and MPO rs2071409 were the three most significant SNPs. They showed similar effects on WBC subtypes, especially granulocytes, lymphocytes, and monocytes. A 3-SNP block in ALOXE3 (rs7215658, rs9892383, and rs3027208) showed a global association (omnibus P = 0.0008) with WBCs even though the three SNPs were not significant individually. Our study suggests that polymorphisms in innate immunity genes may play a role in benzene-induced hematotoxicity; however, independent replication is necessary.
		                        		
		                        		
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Arachidonate 5-Lipoxygenase/genetics/*metabolism
		                        			;
		                        		
		                        			Benzene/toxicity
		                        			;
		                        		
		                        			Cell Count
		                        			;
		                        		
		                        			Cross-Sectional Studies
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Genetic Association Studies
		                        			;
		                        		
		                        			Genetic Predisposition to Disease
		                        			;
		                        		
		                        			Hematologic Diseases/chemically induced/genetics/*metabolism/pathology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunity, Innate/genetics
		                        			;
		                        		
		                        			Leukocytes/*drug effects/metabolism/pathology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Occupational Exposure/adverse effects
		                        			;
		                        		
		                        			Peroxidase/genetics/*metabolism
		                        			;
		                        		
		                        			Polymorphism, Single Nucleotide
		                        			;
		                        		
		                        			Vascular Cell Adhesion Molecule-1/genetics/*metabolism
		                        			
		                        		
		                        	
7.5-lipoxygenase is involved in rotenone-induced injury in PC12 cells.
Xiao-Yan ZHANG ; Li-Hui ZHANG ; Cheng-Tan LI ; Wen-Jian CHEN ; Jian-Bo ZHAO ; Er-Qing WEI
Journal of Zhejiang University. Medical sciences 2011;40(2):150-155
OBJECTIVETo determine whether 5-lipoxygenase (5-LOX) is involved in rotenone-induced injury in PC12 cells, which is a cell model of Parkinson disease.
METHODSAfter rotenone treatment for various durations, cell viability was determined by colorimetric MTT reduction assay, and 5-LOX translocation was detected by immunocytochemistry. The effect of 5-LOX inhibitor zileuton was also investigated.
RESULTRotenone (0.3-30 μmol/L) induced PC12 cell injury, and zileuton (3-100 μmol/L) attenuated this injury. Rotenone also time-and concentration-dependently induced 5-LOX translocation into the nuclear envelope, and zileuton (1-30 μmo/L) significantly inhibited rotenone-induced 5-LOX translocation.
CONCLUSION5-LOX is involved in rotenone-induced injury in PC12 cells, and 5-LOX inhibitor zileuton can reduce rotenone-induced 5-LOX activation and cell injury.
Animals ; Arachidonate 5-Lipoxygenase ; metabolism ; physiology ; Cell Survival ; drug effects ; Hydroxyurea ; analogs & derivatives ; pharmacology ; Lipoxygenase Inhibitors ; pharmacology ; PC12 Cells ; Rats ; Rotenone ; pharmacology
8.Nordihydroguaiaretic acid partially inhibits inflammatory responses after focal cerebral ischemia in rats.
Li-Sheng CHU ; San-Hua FANG ; Yu ZHOU ; Yuan-Jun YIN ; Qing KE ; Wei-Yan CHEN ; Er-Qing WEI
Acta Physiologica Sinica 2010;62(2):101-108
		                        		
		                        			
		                        			The aim of the present study is to investigate the role of nordihydroguaiaretic acid (NDGA) on inflammatory cells accumulation after focal cerebral ischemia and the underlying mechanism. Focal cerebral ischemia was induced by 30 min of middle cerebral artery occlusion (MCAO) followed by 72 h of reperfusion. NDGA (5 and 10 mg/kg) was administered intraperitoneally 30 min, 2, 24, 48 h after reperfusion, respectively. The brain injuries were observed by neurological and histological examination. Endogenous IgG exudation, neutrophils and macrophages/microglia accumulation, and intercellular adhesion molecule-1 (ICAM-1) protein expression were determined by immunohistochemistry 72 h after reperfusion. ICAM-1 mRNA was determined by RT-PCR 72 h after reperfusion. The catalysates of 5-lipoxygenase (5-LOX), leukotriene B4 (LTB4) and cysteinyl leukotrienes (CysLTs), were evaluated by ELISA 3 h after reperfusion. The results showed that NDGA ameliorated neurological dysfunction, decreased infarct volume, and inhibited endogenous IgG exudation, neutrophils infiltration, ICAM-1 mRNA and protein expression 72 h after reperfusion. Moreover, NDGA reduced the levels of LTB4 and CysLTs 3 h after reperfusion. However, NDGA did not reduce the accumulation of macrophages/microglia 72 h after reperfusion. These results suggest that NDGA decreases neutrophil infiltration in the subacute phase of focal cerebral ischemia via inhibiting 5-LOX activation.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Arachidonate 5-Lipoxygenase
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Brain Ischemia
		                        			;
		                        		
		                        			complications
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Immunoglobulin G
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			etiology
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			Intercellular Adhesion Molecule-1
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Leukotriene B4
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Lipoxygenase Inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Masoprocol
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Neutrophils
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Reperfusion Injury
		                        			;
		                        		
		                        			prevention & control
		                        			
		                        		
		                        	
9.Controlling arachidonic acid metabolic network: from single- to multi-target inhibitors of key enzymes.
Ying LIU ; Zheng CHEN ; Er-chang SHANG ; Kun YANG ; Deng-guo WEI ; Lu ZHOU ; Xiao-lu JIANG ; Chong HE ; Lu-hua LAI
Acta Pharmaceutica Sinica 2009;44(3):231-241
		                        		
		                        			
		                        			Inflammatory diseases are common medical conditions seen in disorders of human immune system. There is a great demand for anti-inflammatory drugs. There are major inflammatory mediators in arachidonic acid metabolic network. Several enzymes in this network have been used as key targets for the development of anti-inflammatory drugs. However, specific single-target inhibitors can not sufficiently control the network balance and may cause side effects at the same time. Most inflammation induced diseases come from the complicated coupling of inflammatory cascades involving multiple targets. In order to treat these complicated diseases, drugs that can intervene multi-targets at the same time attracted much attention. The goal of this review is mainly focused on the key enzymes in arachidonic acid metabolic network, such as phospholipase A2, cyclooxygenase, 5-lipoxygenase and eukotriene A4 hydrolase. Advance in single target and multi-targe inhibitors is summarized.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anti-Inflammatory Agents
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Arachidonate 5-Lipoxygenase
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Arachidonic Acid
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cyclooxygenase Inhibitors
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Drug Delivery Systems
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Epoxide Hydrolases
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Lipoxygenase Inhibitors
		                        			;
		                        		
		                        			Metabolic Networks and Pathways
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Phospholipase A2 Inhibitors
		                        			;
		                        		
		                        			Phospholipases A2
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Prostaglandin-Endoperoxide Synthases
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
10.Protein expression of 5-lipoxygenase and activation and cytotoxicity of Benzidine in human bronchial epithelial cells.
Qing-ping TAN ; Jian-an HU ; Yun HUANG ; Yue WU ; Min-ru XIONG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2009;27(1):25-29
OBJECTIVETo investigate the effect of intracellular 5-lipoxygenase on oxidation of benzidine in HBE cells and to provide further evidence that lipoxygenase is an alternative pathway for the oxidation of xenobiotics mediated by cytochrome P450.
METHODSEnzyme system test: Soybean lipoxygenase (SLO), substrate (benzidine) and other components reacted in the enzyme system, followed by detection of the reaction products by spectrophotometry. In vitro test: After HBE cells were exposed to benzidine, the protein levels of 5-lipoxygenase in HBE cells were assessed by Western-blot, and the DNA damage by the single cell gel electrophoresis. At last, the effect of the specific inhibitor of 5-lipoxygenase (AA861) on 5-lipoxygenase protein expression and DNA damage in HBE cells were detected.
RESULTSSLO could catalyze the co-oxidation of benzidine to generate benzidine diimine in the presence of hydrogen peroxide. Under optimal condition, numax value of the oxidation of benzidine catalyzed by SLO was 1.42 nmol*min(-1) SLO, and the Km value of benzidine was 1.48 mmol/L. EGCG could inhibit the oxidation of benzidine by SLO. Benzidine could induce 5-lipoxygenase protein expression in HBE cells, but AA861 was invalid. Benzidine caused DNA damage in HBE cells, which could be significantly inhibited by AA861.
CONCLUSION5-LOX protein expression in HBE cells can be regulated by benzidine, which suggests that the co-oxidation of benzidine by 5-LOX could produce into electrophile that could covalently bind to DNA and induce DNA damage, which could be one of the mechanisms for carcinogenesis of BZD. 5-LOX inhibitor AA861 can inhibit this effect.
Arachidonate 5-Lipoxygenase ; metabolism ; Benzidines ; pharmacokinetics ; toxicity ; Cells, Cultured ; DNA Damage ; drug effects ; Epithelial Cells ; drug effects ; enzymology ; metabolism ; Humans
            
Result Analysis
Print
Save
E-mail