1.In Silico System Pharmacology for the Potential Bioactive Ingredients Contained in Xingnaojing Injection () and Its Material Basis for Sepsis Treatment.
Shi-Tang MA ; Cheng-Tao FENG ; You-Xi XIONG ; Xiao-Lin ZHANG ; Cheng-Gui MIAO ; Hao YU
Chinese journal of integrative medicine 2018;24(12):944-949
OBJECTIVE:
To elucidate the action mechanism of Xingnaojing Injection (, XNJI) for sepsis, and to target screen the potential bioactive ingredients.
METHODS:
An integrated protocol that combines in silico target screen (molecular docking) and database mapping was employed to find the potential inhibitors from XNJI for the sepsis-related targets and to establish the compound-target (C-T) interaction network. The XNJI's bioactive components database was investigated and the sepsis-associated targets were comprehensively constructed; the 3D structure of adenosine receptor A2a and 5-lipoxygenase proteins were established and evaluated with homology modeling method; system network pharmacology for sepsis treatment was studied between the bioactive ingredients and the sepsis targets using computational biology methods to distinguish inhibitors from non inhibitors for the selected sepsis-related targets and C-T network construction.
RESULTS:
Multiple bioactive compounds in the XNJI were found to interact with multiple sepsis targets. The 32 bioactive ingredients were generated from XNJI in pharmacological system, and 21 potential targets were predicted to the sepsis disease; the biological activities for some potential inhibitors had been experimentally confirmed, highlighting the reliability of in silico target screen. Further integrated C-T network showed that these bioactive components together probably display synergistic action for sepsis treatment.
CONCLUSIONS
The uncovered mechanism may offer a superior insight for understanding the theory of the Chinese herbal medicine for combating sepsis. Moreover, the potential inhibitors for the sepsis-related targets may provide a good source to find new lead compounds against sepsis disease.
Arachidonate 5-Lipoxygenase
;
metabolism
;
Computer Simulation
;
Drug Evaluation, Preclinical
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
therapeutic use
;
Humans
;
Injections
;
Phytochemicals
;
therapeutic use
;
Receptor, Adenosine A2A
;
metabolism
;
Reproducibility of Results
;
Sepsis
;
drug therapy
;
metabolism
2.Short-term intensive atorvastatin therapy improves endothelial function partly via attenuating perivascular adipose tissue inflammation through 5-lipoxygenase pathway in hyperlipidemic rabbits.
Xiaoqiao WANG ; Yongqin LIN ; Niansang LUO ; Zhongqing CHEN ; Miaoning GU ; Jingfeng WANG ; Yangxin CHEN ;
Chinese Medical Journal 2014;127(16):2953-2959
BACKGROUNDAtherosclerosis is a kind of disease with multiple risk factors, of which hyperlipidemia is a major classical risk factor resulting in its pathogenesis and development. The aim of this study was to determine the effects of short-term intensive atorvastatin (IA) therapy on vascular endothelial function and explore the possible mechanisms that may help to explain the clinical benefits from short-term intensive statin therapy.
METHODSAfter exposure to high-fat diet (HFD) for 8 weeks, the animals were, respectively, treated with IA or low-dose atorvastatin (LA) for 5 days. Blood lipids, C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide (NO), endothelin-1 (ET-1), and endothelium-dependent vasorelaxation function were, respectively, measured. mRNA and protein expression of CRP, TNF-α, IL-6, macrophage chemoattractant protein-1 (MCP-1), and 5-lipoxygenase (5-LO) were also evaluated in pericarotid adipose tissue (PCAT) and cultured adipocytes.
RESULTSHFD increased serum inflammatory factor levels; induced significant hyperlipidemia and endothelial dysfunction, including imbalance between NO and ET-1; enhanced inflammatory factors and 5-LO expression; and promoted macrophage infiltration into adipose tissue. Five-day IA therapy could significantly decrease serum inflammatory factor levels and their expression in PCAT; restore the balance between NO and ET-1; and improve endothelial function and macrophage infiltration without significant changes in blood lipids. However, all of the above were not observed in LA therapy. In vitro experiment found that lipopolysaccharide (LPS) enhanced the expression of inflammatory factors and 5-LO in cultured adipocytes, which could be attenuated by short-time (6 hours) treatment of high-dose (5 µmol/L) but not low-dose (0.5 µmol/L) atorvastatin. In addition, inhibiting 5-LO by Cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC, a potent and direct 5-LO inhibitor) could significantly downregulate the above-mentioned gene expression in LPS-treated adipocytes.
CONCLUSIONShort-term IA therapy could significantly ameliorate endothelial dysfunction induced by HFD, which may be partly due to attenuating inflammation of PCAT through inhibiting 5-LO pathway.
Adipose Tissue ; drug effects ; immunology ; Animals ; Arachidonate 5-Lipoxygenase ; metabolism ; Atorvastatin Calcium ; Heptanoic Acids ; therapeutic use ; Hyperlipidemias ; drug therapy ; immunology ; Inflammation ; drug therapy ; immunology ; Lipid Metabolism ; drug effects ; Male ; Pyrroles ; therapeutic use ; Rabbits
3.Protective mechanisms of sevoflurane against one-lung ventilation-induced acute lung injury: role of cyclooxygenase-2 and 5-lipoxygenase pathways.
Rui LIU ; Jing LUO ; Jiang LI ; Qingjie MA ; Jingzhe SUN ; Yanhua LI ; Dianhua WANG
Journal of Southern Medical University 2013;33(5):625-630
OBJECTIVETo explore the protective mechanisms of sevoflurane against acute lung injury (ALI) induced by one-lung ventilation (OLV) in view of cyclooxygenase-2 (COX2) and 5-lipoxygenase (5-LOX) pathways.
METHODEighteen healthy Japanese white rabbits were randomized into sham-operated group (S group), OLV group (O group) and OLV + sevoflurane group (OS group). COX2 and 5-LOX protein and mRNA expressions in the lungs were detected by Western blotting and real-time PCR, respectively. Prostaglandin I2 (PGI2), thromboxane A2 (TXA2) and leukotrienes B2 (LTB2) in the lung tissues were quantified with ELISA. Histological scores and lung wet/dry weight (W/D) ratios were determined for lung injury assessment.
RESULTSCOX2 and 5-LOX protein and mRNA expressions and the contents of LTB2, TXA2 and PGI2 in the lungs, lung W/D ratio and histological scores were significantly higher while PGI2/TXA2 ratio was significantly lower in O group and OS group than in S group (P<0.05). Compared with those in O group, COX2 and 5-LOX expressions, pulmonary contents of LTB2, TXA2 and PGI2, and lung W/D ratio all decreased significantly but PGI2/TXA2 ratio was significantly elevated in OS group (P<0.05).
CONCLUSIONOLV may activate COX2 and 5-LOX pathways to result in increased production of arachidonic acid metabolites. Sevoflurane protects against OLV-induced ALI probably by reducing AA metabolites and regulating PGI2/TXA2 ratio through inhibitions of COX2 and 5-LOX pathways.
Acute Lung Injury ; etiology ; metabolism ; Animals ; Arachidonate 5-Lipoxygenase ; metabolism ; Cyclooxygenase 2 ; metabolism ; Lung ; drug effects ; metabolism ; Methyl Ethers ; adverse effects ; One-Lung Ventilation ; adverse effects ; RNA, Messenger ; genetics ; Rabbits
4.Benzoxazole Derivative B-98 Ameliorates Dextran Sulfate Sodium-induced Acute Murine Colitis and the Change of T Cell Profiles in Acute Murine Colitis Model.
Eun Mi SONG ; Sung Ae JUNG ; Jong Soo LEE ; Seung Eun KIM ; Ki Nam SHIM ; Hye Kyung JUNG ; Kwon YOO ; Hae Young PARK
The Korean Journal of Gastroenterology 2013;62(1):33-41
BACKGROUND/AIMS: The unique role of enzyme 5-lipoxygenase (5-LO) in the production of leukotrienes makes it a therapeutic target for inflammatory bowel disease (IBD). The aim of this study was to evaluate the effects of B-98, a newly synthesized benzoxazole derivatives and a novel 5-LO inhibitor, in a mouse model of IBD induced by dextran sulfate sodium (DSS). METHODS: C57BL/6 mice were randomly assigned to four groups: normal control, DSS colitis (DSS+saline), low dose B-98 (DSS+B-98 20 mg/kg) and high dose B-98 (DSS+B-98 100 mg/kg). B-98 was administered with 3% DSS intraperitoneally. The severity of the colitis was assessed via the disease activity index (DAI), colon length, and histopathologic grading. The production of inflammatory cytokines interleukin (IL)-6 was determined by RT-PCR. Th cells were examined for the proportion of Th1 cell, Th2 cell, Th9 cell, Th17 cell and Treg cell using intracellular cytometry. RESULTS: The B-98 group showed lower DAI, less shortening of the colon length and lower histopathologic grading compared with the DSS colitis group (p<0.01). The expression of IL-6 in colonic tissue was significantly lower in the B-98 groups than the DSS colitis group (p<0.05). The cellular profiles revealed that the Th1, Th9 and Th17 cells were increased in the DSS colitis group compared to the B-98 group (p<0.05). CONCLUSIONS: Our results suggest that acute intestinal inflammation is reduced in the group treated with B-98 by Th1, Th9 and Th17 involved cellular immunity.
Acute Disease
;
Animals
;
Arachidonate 5-Lipoxygenase/chemistry/metabolism
;
Benzoxazoles/chemistry/*pharmacology
;
Colitis/chemically induced/pathology/*prevention & control
;
Colon/drug effects/pathology/physiology
;
Dextran Sulfate/toxicity
;
Disease Models, Animal
;
Forkhead Transcription Factors/metabolism
;
Injections, Intraperitoneal
;
Interleukin-6/genetics/metabolism
;
Lipoxygenase Inhibitors/chemistry/*pharmacology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Severity of Illness Index
;
T-Lymphocytes/classification/*drug effects/metabolism
5.Expression of 5-lipoxygenase in hippocampal CA1 neuronal damage following global cerebral ischemia in rats.
Wenjian CHEN ; Chengtan LI ; Jianbo ZHAO ; Xiaoyan ZHANG ; Huayang HAN ; Erqing WEI ; Lihui ZHANG
Journal of Zhejiang University. Medical sciences 2013;42(1):61-66
OBJECTIVETo determine 5-lipoxygenase (5-LOX) expression and the effect of zileuton, a selective 5-LOX inhibitor,on hippocampal neuron injury induced by global cerebral ischemia in rats.
METHODSGlobal cerebral ischemia was induced by bilateral common carotid artery occlusion combined with hypotension in rats. 5-LOX expression was detected by Western blot analyses and 5-LOX localization was visualized by immunohistochemistry and double immunofluorescence methods. The 5-LOX inhibitor zileuton (10, 30, 50 mg/kg) was orally administered for 3 d after ischemia.
RESULTSThe 5-LOX expression was increased in the ischemic hippocampus on d1-7 (peaked at d3), and 5-LOX protein was primarily localized in neurons and translocated to the nuclei in the hippocampal CA1 region after ischemia. The 5-LOX inhibitor zileuton (30, 50 mg/kg) reduced ischemia-induced hippocampal neurons death 3d after ischemia.
CONCLUSION5-LOX is involved in global cerebral ischemic damage in rats, and the 5-LOX inhibitor zileuton has a protective effect on neuronal damage in the rat hippocampus following global cerebral ischemia.
Animals ; Arachidonate 5-Lipoxygenase ; metabolism ; physiology ; Brain Ischemia ; metabolism ; pathology ; CA1 Region, Hippocampal ; metabolism ; pathology ; Disease Models, Animal ; Hydroxyurea ; analogs & derivatives ; pharmacology ; Lipoxygenase Inhibitors ; pharmacology ; Male ; Neurons ; drug effects ; pathology ; Rats ; Rats, Sprague-Dawley
6.Association of 5-lipoxygenase expression and clinicopathological factors in colorectal carcinoma.
Yue-chun LI ; Dong-xia WANG ; Cai-shi LI ; Zhen-peng YE ; Zhi-ming WU ; Jian-hua CHEN
Chinese Journal of Gastrointestinal Surgery 2013;16(9):895-897
OBJECTIVETo examine the association of 5-lipoxygenase (5-LOX) expression with clinicopathological factors in colorectal cancer.
METHODSImmunohistochemical stain was used to detect the 5-LOX expression in 52 resected specimens of colorectal cancer. The association between 5-LOX expression and clinicopathological factors was examined.
RESULTSThe positive rate of 5-LOX expression in 52 specimens of colorectal carcinoma was 73.1% (38/52). In 41 colorectal cancer specimens with lymph node metastasis, the positive rate of 5-LOX expression was higher than that in the specimens without metastasis (87.8% vs. 18.2%, P<0.05). The positive rate of 5-LOX expression in the specimens with deep infiltration (T3 and T4) was higher than that in the specimens with superficial infiltration (T1 and T2) (81.1% vs. 53.3%, P<0.05). The positive rate of 5-LOX expression in TNM stage III and IIII cancer was higher than that in stage I and II (79.5% vs. 53.8%, P<0.05). The positive rate of 5-LOX expression in cancers of poor differentiation and non-differentiation adenocarcinoma was higher than that of well and moderately differentiated cancer (100% vs. 50.0%, P<0.05). There were no significant differences of 5-LOX expression with tumor size,vascular invasion and peritoneal dissemination.
CONCLUSION5-LOX expression in colorectal carcinoma is closely associated with lymph node metastasis, infiltration depth, differentiation degree and TNM stage.
Adult ; Aged ; Aged, 80 and over ; Arachidonate 5-Lipoxygenase ; metabolism ; Colorectal Neoplasms ; enzymology ; pathology ; Female ; Humans ; Lymphatic Metastasis ; Male ; Middle Aged ; Neoplasm Staging
7.Polymorphisms in genes involved in innate immunity and susceptibility to benzene-induced hematotoxicity.
Min SHEN ; Luoping ZHANG ; Kyoung Mu LEE ; Roel VERMEULEN ; H Dean HOSGOOD ; Guilan LI ; Songnian YIN ; Nathaniel ROTHMAN ; Stephen CHANOCK ; Martyn T SMITH ; Qing LAN
Experimental & Molecular Medicine 2011;43(6):374-378
Benzene, a recognized hematotoxicant and carcinogen, can damage the human immune system. We studied the association between single nucleotide polymorphisms (SNPs) in genes involved in innate immunity and benzene hematotoxicity in a cross-sectional study of workers exposed to benzene (250 workers and 140 controls). A total of 1,236 tag SNPs in 149 gene regions of six pathways were included in the analysis. Six gene regions were significant for their association with white blood cell (WBC) counts (MBP, VCAM1, ALOX5, MPO, RAC2, and CRP) based on gene-region (P < 0.05) and SNP analyses (FDR < 0.05). VCAM1 rs3176867, ALOX5 rs7099684, and MPO rs2071409 were the three most significant SNPs. They showed similar effects on WBC subtypes, especially granulocytes, lymphocytes, and monocytes. A 3-SNP block in ALOXE3 (rs7215658, rs9892383, and rs3027208) showed a global association (omnibus P = 0.0008) with WBCs even though the three SNPs were not significant individually. Our study suggests that polymorphisms in innate immunity genes may play a role in benzene-induced hematotoxicity; however, independent replication is necessary.
Adult
;
Arachidonate 5-Lipoxygenase/genetics/*metabolism
;
Benzene/toxicity
;
Cell Count
;
Cross-Sectional Studies
;
Female
;
Genetic Association Studies
;
Genetic Predisposition to Disease
;
Hematologic Diseases/chemically induced/genetics/*metabolism/pathology
;
Humans
;
Immunity, Innate/genetics
;
Leukocytes/*drug effects/metabolism/pathology
;
Male
;
Occupational Exposure/adverse effects
;
Peroxidase/genetics/*metabolism
;
Polymorphism, Single Nucleotide
;
Vascular Cell Adhesion Molecule-1/genetics/*metabolism
8.Ligation of CD40 receptor in human B lymphocytes triggers the 5-lipoxygenase pathway to produce reactive oxygen species and activate p38 MAPK.
Yun Jung HA ; Hee Jung SEUL ; Jong Ran LEE
Experimental & Molecular Medicine 2011;43(2):101-110
Previously, we reported that CD40-induced production of reactive oxygen species (ROS) by NADPH oxidase requires the TNF receptor-associated factor (TRAF) 3, as well as the activities of phosphatidylinositol 3-kinase (PI3K) and Rac1. Here we investigated the possible mechanisms of the production of ROS after CD40 ligation in B cells. We describe an alternative ROS production pathway that is triggered by CD40 ligation, involves 5-lipoxygenase (5-LO), and results in activation of p38 MAPK. Our studies in Raji human B lymphomas revealed that CD40-induced ROS production by 5-LO also requires the activities of PI3K and Rac1. In contrast to the NADPH oxidase pathway, however, TRAF molecules are not required for the CD40-induced ROS production by 5-LO. The association of CD40 with 5-LO is dependent on CD40 ligation in Raji B cells, and co-immunoprecipitation experiments using epitope-tagged proteins transiently expressed in human embryonic kidney 293T cells revealed the role of the regulatory subunit of PI3K, p85, in this association. Collectively, these data suggest a separate pathway for the CD40-induced ROS production in B cells and demonstrate that this pathway requires 5-LO via direct association of p85 with both CD40 and 5-LO.
Antigens, CD40/*metabolism
;
Arachidonate 5-Lipoxygenase/*metabolism
;
B-Lymphocytes/*enzymology/immunology
;
CD40 Ligand/metabolism
;
Cell Line, Tumor
;
*Enzyme Activation
;
HEK293 Cells
;
Humans
;
Phosphatidylinositol 3-Kinases/metabolism
;
Protein Binding
;
*Reactive Oxygen Species/metabolism
;
Signal Transduction
;
p38 Mitogen-Activated Protein Kinases/*metabolism
;
rac GTP-Binding Proteins/metabolism
9.5-lipoxygenase is involved in rotenone-induced injury in PC12 cells.
Xiao-Yan ZHANG ; Li-Hui ZHANG ; Cheng-Tan LI ; Wen-Jian CHEN ; Jian-Bo ZHAO ; Er-Qing WEI
Journal of Zhejiang University. Medical sciences 2011;40(2):150-155
OBJECTIVETo determine whether 5-lipoxygenase (5-LOX) is involved in rotenone-induced injury in PC12 cells, which is a cell model of Parkinson disease.
METHODSAfter rotenone treatment for various durations, cell viability was determined by colorimetric MTT reduction assay, and 5-LOX translocation was detected by immunocytochemistry. The effect of 5-LOX inhibitor zileuton was also investigated.
RESULTRotenone (0.3-30 μmol/L) induced PC12 cell injury, and zileuton (3-100 μmol/L) attenuated this injury. Rotenone also time-and concentration-dependently induced 5-LOX translocation into the nuclear envelope, and zileuton (1-30 μmo/L) significantly inhibited rotenone-induced 5-LOX translocation.
CONCLUSION5-LOX is involved in rotenone-induced injury in PC12 cells, and 5-LOX inhibitor zileuton can reduce rotenone-induced 5-LOX activation and cell injury.
Animals ; Arachidonate 5-Lipoxygenase ; metabolism ; physiology ; Cell Survival ; drug effects ; Hydroxyurea ; analogs & derivatives ; pharmacology ; Lipoxygenase Inhibitors ; pharmacology ; PC12 Cells ; Rats ; Rotenone ; pharmacology
10.Nordihydroguaiaretic acid partially inhibits inflammatory responses after focal cerebral ischemia in rats.
Li-Sheng CHU ; San-Hua FANG ; Yu ZHOU ; Yuan-Jun YIN ; Qing KE ; Wei-Yan CHEN ; Er-Qing WEI
Acta Physiologica Sinica 2010;62(2):101-108
The aim of the present study is to investigate the role of nordihydroguaiaretic acid (NDGA) on inflammatory cells accumulation after focal cerebral ischemia and the underlying mechanism. Focal cerebral ischemia was induced by 30 min of middle cerebral artery occlusion (MCAO) followed by 72 h of reperfusion. NDGA (5 and 10 mg/kg) was administered intraperitoneally 30 min, 2, 24, 48 h after reperfusion, respectively. The brain injuries were observed by neurological and histological examination. Endogenous IgG exudation, neutrophils and macrophages/microglia accumulation, and intercellular adhesion molecule-1 (ICAM-1) protein expression were determined by immunohistochemistry 72 h after reperfusion. ICAM-1 mRNA was determined by RT-PCR 72 h after reperfusion. The catalysates of 5-lipoxygenase (5-LOX), leukotriene B4 (LTB4) and cysteinyl leukotrienes (CysLTs), were evaluated by ELISA 3 h after reperfusion. The results showed that NDGA ameliorated neurological dysfunction, decreased infarct volume, and inhibited endogenous IgG exudation, neutrophils infiltration, ICAM-1 mRNA and protein expression 72 h after reperfusion. Moreover, NDGA reduced the levels of LTB4 and CysLTs 3 h after reperfusion. However, NDGA did not reduce the accumulation of macrophages/microglia 72 h after reperfusion. These results suggest that NDGA decreases neutrophil infiltration in the subacute phase of focal cerebral ischemia via inhibiting 5-LOX activation.
Animals
;
Arachidonate 5-Lipoxygenase
;
metabolism
;
Brain Ischemia
;
complications
;
physiopathology
;
Immunoglobulin G
;
immunology
;
Inflammation
;
etiology
;
physiopathology
;
prevention & control
;
Intercellular Adhesion Molecule-1
;
genetics
;
metabolism
;
Leukotriene B4
;
metabolism
;
Lipoxygenase Inhibitors
;
pharmacology
;
Male
;
Masoprocol
;
pharmacology
;
Neutrophils
;
drug effects
;
RNA, Messenger
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
prevention & control

Result Analysis
Print
Save
E-mail